Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{x}>2\Leftrightarrow\sqrt{x^2}>2^2\Leftrightarrow x>4\)
\(\sqrt{x}< 1\Leftrightarrow\sqrt{x^2}< 1^2\Leftrightarrow x< 1\)
a/\(\sqrt{x}=7\)
\(\Leftrightarrow x=49\)
b/\(\Leftrightarrow x< 4\)(do x>0)
\(\Rightarrow x\varepsilon\left\{0;1;2;3\right\}\)
c/\(2x< 16\)
\(\Leftrightarrow x< 8\)
\(\Leftrightarrow x\varepsilon\left\{1;2;3;4;5;6;7\right\}\)
a) \(2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\)
\(\Leftrightarrow x=7^2\Leftrightarrow x=49\)
b) \(\sqrt{x}< \sqrt{2}\Leftrightarrow x< 2\)
c) \(\sqrt{2x}< 4\)
Vì \(4=\sqrt{16}\text{ nên }\sqrt{2x}< 4\text{ có nghĩa là }\sqrt{2x}< 16\)
\(\Leftrightarrow2x< 16\)
\(\Leftrightarrow x< 8\left(x\ge0\right)\)
Với câu c, Thiên Anh nên thêm điều kiện để phần kết luận là: \(0\le x< 2.\)
a) \(\sqrt{x}>1\Leftrightarrow x>1\)
b) \(\sqrt{x}< 3\Leftrightarrow x< 9\)
Vì x không âm nên x={0;1;2;3;4;5;6;7;8}
a)\(\sqrt{x}>1\Leftrightarrow\sqrt{x^2}>1^2\Leftrightarrow x>1\)
b)\(\sqrt{x}< 3\Leftrightarrow\sqrt{x^2}< 3^2\Leftrightarrow x< 9\)
a) = 225
b) 49
c) = 1
d) 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7
k nha
a) \(\sqrt{x}=15\)
=> x = 152
=> x = 225
b) \(2\sqrt{x}=14\)
<=> \(\sqrt{x}=7\)
=> x = 72
=> x = 49
c) \(\sqrt{x}< \sqrt{2}\)
<=> x < 2
mà \(x\ge0\)
=> x= {0;1}
d) \(\sqrt{2x}< 4\)
=> 2x < 16
<=> x < 8
mà \(x\ge0\)
=> x = {0;1;2;3;4;5;6;7}
ok mk nhé!!!!!! 53654645756876969251353253434645655435436464556756252345345634
\(2\sqrt{x}=14\Rightarrow\sqrt{x}=7\) \(\Rightarrow x=49\)
\(\sqrt{x}< \sqrt{2}\Rightarrow x< 2\) Mà x không âm \(\Rightarrow x\in\left(0;1\right)\)
\(\sqrt{2x}< 4\Rightarrow2x< 16\) \(\Rightarrow x< 8\) mà x không âm \(\Rightarrow x\in\left(0;1;2;3;4;5;6;7\right)\)
Ta có:
\(\sqrt{x}< \sqrt{2}\)
\(\Leftrightarrow x< 2\)
Vì x nguyên không âm nên
\(\Rightarrow1\le x< 2\)
\(\Rightarrow x=1\)
\(\sqrt{x}\)<\(\sqrt{2}\)
<=> x<2
vì x nguyên không âm nên
\(\Rightarrow\)0<=x<2
\(\Rightarrow\)x=0;x=1
mà x lớn nhất nên x=1
- nhận thấy x = 0 ko là no của p/t
- chia cả tử và mẫu của 2 phân thức cho x
-> Đặt ẩn phụ -> Ez
a) Bpt luôn đúng với mọi x không âm
b) đk: \(x\le2\)
Có: \(\sqrt{x}>\sqrt{2-x}\Leftrightarrow x>2-x\)
\(\Leftrightarrow2x>2\Leftrightarrow x>1\)
Kết hợp với đk, ta được: \(1< x\le2\)
√x < √2
Vì x ≥ 0 nên bình phương hai vế ta được: x < 2
Vậy 0 ≤ x < 2