Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân số đã cho có dạng a+n+4/a với a=3,4,5,6,7
Do phân số đã cho tối giản nên UCLN(a+n+4;a)=1 hay n+4 là số nguyên tố
Vậy n+4=11 (Do 11 là số nguyên tố)
n=7
Phân số đã cho có dạng a+n+4/a với a=3,4,5,6,7
Do phân số đã cho tối giản nên UCLN(a+n+4;a)=1 hay n+4 là số nguyên tố
Vậy n+4=11 (Do 11 là số nguyên tố)
n=7
Các phân số đã cho đều có dạng \(\frac{a}{a+\left(n+2\right)}\)
Vì các phân số này tối giản nên n + 2 và a là số nguyên tố cùng nhau
Như vậy n + 2 phải nguyên tố cùng nhau với các số 7;8;9;....;31 và n + 2 là số nhỏ nhất
Vậy n + 2 phải là số nguyên tố nhỏ nhất lớn hơn 31 tức là n + 2 = 37, do đó số n cần phải tìm là 35
Gọi UCLN(n+1,2n+3) = d
=> n + 1 chia hết cho d => 2(n + 1) chia hết cho d => 2n + 2 chia hết cho d
2n + 3 chia hết cho d
=> 2n + 3 - (2n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> UCLN(n+1,2n+3) = 1
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản
Gọi UCLN(2n+1,2n+3) = d
=> 2n+1 chia hết cho d
2n+3 chia hết cho d
=> 2n+3 - (2n+1) chia hết cho d
=> 2 chia hết cho d
=> d \(\in\){1;2}
Vì 2n+1 lẻ nên d = 1
=>UCLN(2n+1,2n+3) = 1
Vậy \(\frac{2n+1}{2n+3}\) là phân số tối giản
A . n + 19 / n + 6 thuộc Z
=> n + 19 chia hết cho n + 6
Ta có n + 19 = n + 13 + 6
Vì n + 6 chia hết cho n + 6 => 13 chia hết cho n + 6
=> n + 6 thuộc Ư ( 13 )
Ư ( 13 ) = { 1 ; -1 ; 13 ; -13 }
TH1 ; n + 6 = 1
n = 1 - 6
n = -5
TH2 : n + 6 = -1
n = -1 - 6
n = -7
TH3 : n + 6 = 13
n = 13 - 6
n = 7
Th4 : n + 6 = -13
n = -13 - 6
n = -19
Vậy n thuộc { -5 ; - 7 ; 7 ; -19 }
Phần b mk chịu !!