K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2019

a) xy + 4x = 35 + 5y

=> xy + 4x - 5y = 35

=> x(y + 4) - 5(y + 4) = 15

=> (x - 5)(y + 4) = 15

=> x - 5;y + 4 \(\in\)Ư(15) = {1; 3; 5; 15}

Lập bảng :

x - 5 1 3 5 15
y + 4 15 5 3 1
  x 6 8 10 20
  y 11 1 -1(loại)-3(loại)

Vậy ...

3 tháng 9 2019

b)  2|x| + y2 + y = 2x + 1

Ta có: 2x + 1 là số lẻ => 2|x| + y2 + y là số lẻ

Mà y2 +  y = y(y + 1) là số chẵn => 2|x| là số lẻ

                              <=> 2|x| = 1 <=> 2|x| = 20 <=> |x| = 0 <=> x = 0

Với x = 0 => 20 + y2 + y = 2.0 + 1

=> 1 + y2 + y = 1

=> y(y + 1) = 0

=> \(\orbr{\begin{cases}y=0\\y+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)

Do x; y \(\in\)N => x = y = 0 (tm)

5 tháng 11 2019

Ta có:

xy+4x=35+5y

\(\Leftrightarrow\)x(y+4)=20+15+5y

\(\Leftrightarrow\)x(y+4)=5(y+4)+15

\(\Leftrightarrow\)x(y+4)+5(y+4)=15

\(\Leftrightarrow\)(x+5)(y+4)=15

Ta có bảng:

x+5-15-5-3-113515
y+4-1-3-5-1515531
x-20-10-8-6-4-2010
y-5-7-9-19111-1-3

Vậy................

5 tháng 11 2019

<=>xy+4x-5y=35
<=>xy+4x-5y-20=15
<=> x(y+4) -5(y+4)=15=1.15=(-1)(-15)=3.5=.....
Ta có bảng.....
k nhé :3

29 tháng 9 2019

xy + 4x = 35 + 5y

=> xy + 4x - 5y = 35

=> x(y + 4) - 5(y + 4) = 15

=> (x - 5)(y + 4) = 15

=> x - 5; y + 4 \(\in\)Ư(15) = {1; -1; 3; -3; 5; -5; 15; -15}

Lập bảng :

   x - 5    1  -1   3   -3   5  -5  15  -15
  y + 4   15 -15   5   -5   3  -3  1   -1
   x    6  4   8    2  10   0  20 -10
   y   11  19   1   -9  -1  -7  -3   -5

Vậy ...

13 tháng 12 2020

Vì x,y nguyên \(\Rightarrow2020\left(x-2019\right)^2>2020\left(x\ne0\right)\)

mà \(25^2-y^2\le25^2=625\)

Theo bài ra : \(2020\left(x-2019\right)^2=25-y^2\)

Vậy x=0 vì \(x\ne0\)thì 2020(x-2019)2>2020

Thay x=0 vào pt:

25-y2=0=> y= 5 hoặc y=-5

31 tháng 8 2019

/x/ là giá trị tuyệt đối của x

31 tháng 8 2019

Giải : Ta có : 2x + 1 là số lẻ

=> 2|x| + y2 + y là số lẻ

Do y2 + y = y(y + 1) là 2 số tự nhiên liên tiếp => y2 + y là số chẵn

  => 2|x| là số lẻ <=> 2|x| = 1 <=> |x| = 0 <=> x = 0

Với x = 0 => 1 + y2 + y = 2.0 + 1

=> y2 + y + 1 = 1

=> y(y + 1) = 1 - 1 

=> y(y + 1) = 0

=> \(\orbr{\begin{cases}y=0\\y+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)

Do x; y \(\in\)N <=> x = y = 0

7 tháng 3 2018

x=0 , y=1

7 tháng 3 2018

cho mình xin cách giải

7 tháng 5 2020

Gọi \(d=gcd\left(x;y\right)\Rightarrow x=md;y=nd\) với \(\left(m;n\right)=1;m,n\inℕ^∗\)

Ta có:\(A=\frac{x^2+py^2}{xy}=\frac{m^2d^2+pn^2d^2}{mnd^2}=\frac{m^2+pn^2}{mn}\)

\(\Rightarrow m^2+pn^2⋮mn\)

\(\Rightarrow\hept{\begin{cases}m^2+pn^2⋮m\\m^2+pn^2⋮n\end{cases}}\Rightarrow m^2⋮n\)

Mà \(\left(m;n\right)=1\Rightarrow n=1\Rightarrow m^2+p⋮m\Rightarrow p⋮m\)

Mà p là số nguyên tố nên \(m=1\left(h\right)m=p\)

Với \(m=1\Rightarrow x=y=d\Rightarrow\frac{x^2+py^2}{xy}=1+p\)

Với \(m=p\Rightarrow x=dp;y=d\Rightarrow\frac{x^2+py^2}{xy}=p+1\)

Vậy ta có đpcm

7 tháng 3 2022

Ta có: \(6x^2+5y^2=74>6x^2\Leftrightarrow x^2< \dfrac{37}{3}\Leftrightarrow x^2\in\left\{0,1,4,9\right\}\)

\(x^2=0\Rightarrow x=0\) thay x=0 pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.0^2+5y^2=74\\ \Leftrightarrow5y^2=74\\ \Leftrightarrow y^2=\dfrac{74}{5}\left(ktm\right)\)

\(x^2=1\Leftrightarrow x=\pm1\) thay x=\(\pm1\) pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.\left(\pm1\right)^2+5y^2=74\\ \Leftrightarrow6+5y^2=74\\ \Leftrightarrow y^2=\dfrac{68}{5}\left(ktm\right)\)

\(x^2=4\Leftrightarrow x=\pm2\) thay x=\(\pm2\) pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.\left(\pm2\right)^2+5y^2=74\\ \Leftrightarrow6.4+5y^2=74\\ \Leftrightarrow24+5y^2=74\\ \Leftrightarrow y^2=10\left(ktm\right)\)

\(x^2=9\Leftrightarrow x=\pm3\) thay x=\(\pm3\) vào pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.\left(\pm3\right)^2+5y^2=74\\ \Leftrightarrow6.9+5y^2=74\\ \Leftrightarrow54+5y^2=74\\ \Leftrightarrow y^2=4\\ \Leftrightarrow y=\pm2\)

Vậy \(\left(x,y\right)\in\left\{\left(-3;-2\right);\left(-3;2\right);\left(3;-2\right);\left(3;2\right)\right\}\)

 

8 tháng 3 2022

Ta có: 

\(6\left(x^2-4\right)=5\left(10-y^2\right)\left(1\right)\)

\(\Rightarrow6\left(x^2-4\right)⋮5\Leftrightarrow\left(6;5\right)=1\)

\(\Rightarrow x^2-4⋮5\Leftrightarrow x^2=5k+4\left(k\inℕ\right)\)

Đặt \(\left(1\right)=x^2-4=5k\)ta lại có:

\(\Rightarrow y^2=10-6k\)

Mà \(\hept{\begin{cases}x^2>0\\y^2>0\end{cases}}\Rightarrow\hept{\begin{cases}5k+4>0\\10-6k>0\end{cases}}\)

\(\Rightarrow-\frac{4}{5}< k< \frac{5}{3}\Leftrightarrow\orbr{\begin{cases}k=0\left(loại\right)\\k=1\end{cases}}\)

\(k=1\Leftrightarrow\hept{\begin{cases}x^2=9\\y^2=4\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm3\\y=\pm2\end{cases}}\)

Vậy cặp \(\left(x,y\right)\in\left\{\left(-3;-2\right);\left(3;2\right)\right\}\)