\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
16 tháng 5 2021

Ta có:

\(\left(2^x+1\right)\left(2^x+4\right)\left(2^x+2\right)\left(2^x+3\right)=11879+5^y\)

\(\Leftrightarrow\left(2^{2x}+5.2^x+4\right)\left(2^{2x}+5.2^x+6\right)=11879+5^y\)

Đặt \(2^{2x}+5.2^x+4=a\) ta có

\(a\left(a+2\right)=11879+5^y\Leftrightarrow\left(a+1\right)^2=11880+5^y\)

TH1:\(y=0\Rightarrow\left(a+1\right)^2=11881=109^2\Rightarrow a=108\)

Hay \(2^{2x}+5.2^x+4=108\Leftrightarrow2^{2x}+5.2^x-104=0\Leftrightarrow\orbr{\begin{cases}2^x=8\\2^x=-13\end{cases}\Leftrightarrow x=3}\)

TH2:\(y>0\Rightarrow11880+5^y\text{ chia hết cho 5}\) 

nên \(11880+5^y\text{ chia hết cho 25}\) Vô lí

Vậy PT có nghiệm duy nhất x=3 y=0

18 tháng 10 2016

Ta có

\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879\)

\(\Leftrightarrow\left(2^{2x}+5\times2^x+4\right)\left(2^{2x}+5\times2^x+6\right)=11879+5^y\)

\(\Leftrightarrow\left(2^{2x}+5\times2^x+5\right)^2=11880+5^y\)

Với y = 0 thì

\(2^{2x}+5\times2^x+5=109\)

\(\Leftrightarrow2^x=8\)

\(\Leftrightarrow x=3\)

Với \(y\ge1\)thì vế trái không chia hết cho 5 còn vế phải chia hết cho 5 nên không tồn tại (x, y) thỏa cái đó

Vậy có duy nhất 1 cặp nghiệm tự nhiên là (x, y) = (3, 0)

27 tháng 1 2016

Đặt A=(2^x+1)(2^x+2)(2^x+3)(2^x+4), ta có 2^x.A là tích của 5 số tự nhiên liên tiếp nên chia hết cho 5. Nhưng 2^x không chia hết cho 5, do đó A chia hết cho 5.

Nếu y>=1 ta có (2^x+1)(2^x+2)(2^x+3)(2^x+4)-5^y chia hết cho 5 mà 11879 không chia hết cho 5 nên y>=1 không thỏa mãn

=>y=0

Khi đó ta có  (2^x+1)(2^x+2)(2^x+3)(2^x+4)-5^y=11879

             <=> (2^x+1)(2^x+2)(2^x+3)(2^x+4)-1=11879

             <=> (2^x+1)(2^x+2)(2^x+3)(2^x+4)=11880

             <=> (2^x+1)(2^x+2)(2^x+3)(2^x+4)=9.10.11.12

               =>x=3   

Vậy x=3 và y=0

23 tháng 6 2016

Đáp án là 2,999960606

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

27 tháng 10 2020

Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)

Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)

Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*

Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)

29 tháng 10 2020

Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)

Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))

\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)

\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2