Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
\(\frac{2-x}{2015}+\frac{3-x}{1007}+\frac{4-x}{671}=\frac{2005-x}{2}\)
\(( \frac{2-x}{2015}+1 )+ (\frac{3-x}{1007}+2 )+ ( \frac{4-x}{671}+3 )=\frac{2005-x}{2}+6\)
\(\frac{2017-x}{2015}+\frac{2017-x}{1007}+\frac{2017-x}{671}=\frac{2017-x}{2}\)
\(\frac{2017-x}{2015}+\frac{2017-x}{1007}+\frac{2017-x}{671}-\frac{2017-x}{2}=0\)
\((2017-x)(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{2})=0\)
Do \(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{2}\ne0\)
\(\Rightarrow\text{ }2017-x=0\)
\(\Rightarrow\text{ }x=2017\)
\(\frac{x+2}{2017}+\frac{x+3}{2016}+\frac{x+4}{2015}+\frac{x+5}{1007}+\frac{x+2074}{11}=0\)
\(\Leftrightarrow\frac{x+2}{2017}+1+\frac{x+3}{2016}+1+\frac{x+4}{2015}+1+\frac{x+5}{1007}+2+\frac{x+2074}{11}-5=0\)
\(\Leftrightarrow\frac{x+2019}{2017}+\frac{x+2019}{2016}+\frac{x+2019}{2015}+\frac{x+2019}{1007}+\frac{x+2019}{11}=0\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{1007}+\frac{1}{11}\right)=0\)
\(\Leftrightarrow\left(x+2019\right)=0vì\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{1007}+\frac{1}{11}\right)\ne0\)
\(\Leftrightarrow x=-2019\)
Bài 1 :
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\left(\frac{2017}{1}+1\right)+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)+1}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\frac{2018}{1}+\frac{2018}{2}+\frac{2018}{3}+....+\frac{2018}{2017}+\frac{2018}{2018}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}\right)}\)
\(=\frac{1}{2018}\)
B=\(\frac{\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}}{\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}}\)
\(\)TA CÓ E=\(\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}\)
\(200E=\frac{200}{101.99}+\frac{200}{103.97}+..+\frac{200}{149.51}\)
\(200E=\frac{101+99}{101.99}+\frac{103+97}{103.97}+...+\frac{149+51}{149.51}\)
\(200E=\frac{1}{99}+\frac{1}{101}+\frac{1}{97}+\frac{1}{103}+...+\frac{1}{51}+\frac{1}{149}\)
\(200E=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\)
\(E=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right):200\)\(=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right).\frac{1}{200}\)
\(\Rightarrow B=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}\)/\(\left(\frac{1}{51}+\frac{1}{53}+..+\frac{1}{149}\right).\frac{1}{200}\)
\(\Rightarrow B=\frac{1}{\frac{1}{200}}=200\)
VẬY B=200
\(\frac{x+1}{2015}\)+\(\frac{x+2}{2014}\)+\(\frac{x+3}{2013}\)+\(\frac{x+4}{2012}\)=44
\(\frac{x+1}{2015}\)+1+\(\frac{x+2}{2014}\)+1+\(\frac{x+3}{2013}\)+1+\(\frac{x+4}{2012}\)+1=44+4
\(\frac{x+2016}{2015}\)+\(\frac{x+2016}{2014}\)+\(\frac{x+2016}{2013}\)+\(\frac{x+2016}{2012}\)=48
(x+2016)(\(\frac{1}{2015}\)+\(\frac{1}{2014}\)+\(\frac{1}{2013}\)+\(\frac{1}{2012}\))=48
tu lam tiep.Nho k tui voi
\(\frac{1-x}{2015}+\frac{2-x}{1007}+\frac{3-x}{671}=\frac{1992-x}{4}\)
\(\Rightarrow\frac{1-x}{2015}+1+\frac{2-x}{1007}+2+\frac{3-x}{671}+3=\frac{1992-x}{4}+6\)
\(\Rightarrow\frac{2016-x}{2015}+\frac{2016-x}{1007}+\frac{2016-x}{671}=\frac{2016-x}{4}\)
\(\Rightarrow\frac{2016-x}{2015}+\frac{2016-x}{1007}+\frac{2016-x}{671}-\frac{2016-x}{4}=0\)
\(\Rightarrow\left(2016-x\right)\left(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{4}\right)=0\)
\(\Rightarrow2016-x=0\).Do \(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{4}\ne0\)
\(\Rightarrow x=2016\)