Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{8.9.10}\right):2.x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right):2.x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right):2.x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{90}\right):2.x=\frac{23}{45}\)
\(\Rightarrow\frac{11}{45}x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{45}\div\frac{11}{45}=\frac{23}{11}\)
Vậy \(x=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).\frac{1}{2}.x=\frac{23}{45}\)
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{8.9}+\frac{1}{9.10}\right).\frac{1}{2}.x=\frac{23}{45}\)
\(\left(\frac{1}{2}+\frac{1}{6}+....+\frac{1}{72}+\frac{1}{90}\right).\frac{1}{2}.x=\frac{23}{45}\)
\(\left(\frac{1}{2}-\frac{1}{90}\right).\frac{1}{2}.x=\frac{23}{45}\)
\(\frac{22}{45}.\frac{1}{2}x=\frac{23}{45}\)
\(\frac{11}{45}.x=\frac{23}{45}\)
\(x=\frac{23}{45}\div\frac{11}{45}\)
\(x=\frac{23}{11}\)
=> \(x=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{46}{45}\)
\(=\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x\)
\(=\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\right).x\)
\(=\left(\frac{1}{2}-\frac{1}{90}\right).x=\left(\frac{45}{90}-\frac{1}{90}\right)x=\frac{44}{90}.x=\frac{22x}{45}=\frac{46}{45}\)
=> 22x=46
=> x=\(46:22=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{22}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{22}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{22}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{90}\right).x=\frac{22}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{45}{90}-\frac{1}{90}\right).x=\frac{22}{45}\)
\(\Rightarrow\frac{1}{2}.\frac{44}{90}.x=\frac{22}{45}\)
\(\Rightarrow\frac{11}{45}.x=\frac{22}{45}\)
\(\Rightarrow x=\frac{22}{45}:\frac{11}{45}\)
\(\Rightarrow x=\frac{22}{45}.\frac{45}{11}\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
Chúc học tốt !!!
Công thức :
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)
VD ( dễ hiểu )
Theo đầu bài ta có:
\(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\right)\cdot x=\frac{23}{45}\)
\(\Rightarrow\frac{\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}}{2}\cdot x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{1}{1\cdot2}-\frac{1}{9\cdot10}\right)\cdot x=\frac{46}{45}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{90}\right)\cdot x=\frac{46}{45}\)
\(\Rightarrow\frac{22}{45}\cdot x=\frac{46}{45}\)
\(\Rightarrow x=\frac{23}{11}\)
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)\)
\(A=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
\(\Rightarrow\frac{11}{45}.x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}=\frac{23}{11}\)
Ủng hộ mk nha !!! ^_^
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right).x=\frac{23}{45}\)
\(\Rightarrow x=2\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\left[\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\right]x=\frac{23}{45}\)
\(\Leftrightarrow\left[\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)\right]x=\frac{23}{45}\)
\(\Leftrightarrow\left(\frac{1}{2}.\frac{44}{90}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{11}{45}x=\frac{23}{45}\Rightarrow x=\frac{23}{45}:\frac{11}{45}=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right)x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{48}{45}\)
\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{48}{45}\)
\(\Rightarrow\frac{22}{45}x=\frac{48}{45}\)
\(\Rightarrow x=\frac{24}{11}\)
Vậy...