Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để B là 1 phân số nguyên
\(\Rightarrow x-1\ne0\)
\(\Rightarrow x\ne1\).Vậy mọi x khác 1 đều thỏa mãn
Để C là 1 phân số nguyên
\(\Rightarrow2x-1\ne0\)
\(\Rightarrow2x\ne1\)
\(\Rightarrow x\ne\frac{1}{2}\).Vậy...
Tương tự
1 . ( 2x + 1 ) ( y - 1 ) = 12
Vì ( 2x + 1 ) ( y - 1 ) = 12 nên 2x + 1 là ước của12 .
Ư ( 12 ) = { 1 ; 2 ; 3 ; 4 ; 6 ; 12 }
Mà 2x + 1 là số lẻ nên 2x + 1 thuộc { 1 ; 3 }
+) Nếu 2x + 1 = 1 thì x = 0
=> y - 1 = 12 => y = 13
+) Nếu 2x + 1 = 3 thì x = 1
=> y - 1 = 4 => y = 5
Vậy x = 0 , y = 13
x = 1 , y = 5
V
\(\frac{2n+7}{n-1}=2+\frac{9}{n-1}\)
Để \(2+\frac{9}{n-1}\)có giá trị là số tự nhiên thì n-1 là ước của 9 và ước tự nhiên
=> Ư(9)={1;3;9}
Với n-1=1=> n=2 (TM)
n-1=3=> n=4 (TM)
n-1=9=> n=10 TM)
Vậy n ={2;4;10} để \(\frac{2n+7}{n-1}\)có giá trị là số tự nhiên
3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
Để \(\frac{2x-1}{2x+3}\) đạt giá trị nguyên
<=> 2x-1 chia hết cho 2x+3
=> (2x+3)-4 chia hết cho 2x+3
Để (2x+3)-4 chia hết cho 2x+3
<=> 2x+3 chia hết cho 2x+3
4 chia hết cho 2x+3
Vì 4 chia hết cho 2x+3 => 2x+3 thuộc Ư(4)={-4;-2;-1;1;2;4}
Ta có bảng sau:
2x+3 | -4 | -2 | -1 | 1 | 2 | 4 |
x | Loại | Loại | -2 | -1 | Loại | Loại |
Vậy các giá trị nguyên n thỏa mãn là: -2;-1
k nha các bạn
Mình có góp ý thế này nhé Trịnh Thị Thúy Vân : Vì 2x + 3 là số lẻ nên ta chỉ xét trường hợp 1 và -1
3/ bạn lập bảng xét dấu là sẽ thấy có 4 trường hợp:
TH1: x<(-5/6), khi đó: -(2x+1)+[-(3-4x)]+[-(6x+5)]=2014
-2x-1-3+4x-6x-5=2014
-4x-9=2014
x=-2023/4 ( TM x<-5/6)
TH2: -5/6<=x<=-1/2, khi đó: 2x+1+[-(3-4x)]+[-(6x+5)]=2014
2x+1-3+4x-6x-5=2014
0x-7=2014 ( ko có giá trị x TM pt)
TH3:-1/2<=x<=3/4, khi đó: 2x+1+(3-4x)+[-(6x+5)]=2014
2x+1+3-4x-6x-5=2014
-8x-1=2014
x=-2015/8 ( ko TM -1/2<=x<=3/4 )
TH4: x>3/4; khi đó: 2x+1+3-4x+6x+5=2014
4x+9=2014
x=2005/4( TM x>3/4)
thế là xong. cái nào TM thì lấy
ghi chú <= là nhỏ hơn hoặc bằng
\(\dfrac{6x}{2x-1}\in Z\Rightarrow\dfrac{6x-3+3}{2x-1}\in Z\Rightarrow\dfrac{3\left(2x-1\right)+3}{2x-1}\in Z\)
\(\Rightarrow3+\dfrac{3}{2x-1}\in Z\)
\(\Rightarrow\dfrac{3}{2x-1}\in Z\)
\(\Rightarrow2x-1=Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x=\left\{-1;0;1;2\right\}\)