Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(19x+2\times5^2\right):14=\left(13-8\right)^2-4^2\)
\(\Rightarrow\left(19x+50\right):14=5^2-4^2=25-16=9\)
\(\Rightarrow19x+50=126\)
\(\Rightarrow19x=76\Rightarrow x=4\)
Vậy x = 4
b) \(2\times3^2=10\times3^{12}+8\times27^4\)
\(\Rightarrow2\times3^2=10\times\left(3^3\right)^4+8\times27^4\)
\(\Rightarrow2\times3^2=27^4\times\left(10+8\right)\)
\(\Rightarrow18=27^4\times18\)
\(\Rightarrow27^4\times18-18=0\Rightarrow18\times\left(27^4-1\right)=0\)
=> Không thấy biến x đâu cả
c) Ta thấy 33 = 27
\(\Rightarrow3^{2x-5}=3^3\Rightarrow2x-5=3\Rightarrow2x=8\Rightarrow x=4\)
Vậy x = 4
d) \(3^{x+1}-x=80\Rightarrow3^{x+1}=81\)
Ta thấy 34 = 81
\(\Rightarrow3^{x+1}=3^4\Rightarrow x+1=4\Rightarrow x=3\)
Vậy x = 3
a: \(\Leftrightarrow x^3=\dfrac{539}{64}\)
hay \(x=\dfrac{7\sqrt{11}}{4}\)
c: \(\Leftrightarrow2^{2x-1}=2^9\cdot2^2=2^{11}\)
=>2x-1=11
hay x=6
d: \(\Leftrightarrow x^{17}-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
hay \(x\in\left\{0;1;-1\right\}\)
a) \(3^{x-2}=27\cdot9\)
\(3^{x-2}=3^3\cdot3^2=3^5\)
\(\Rightarrow\)\(x-2=5\Rightarrow x=7\)
b) \(2^{x+1}+2^{x+3}=80\)
\(\Rightarrow2^{x+1}\left(1+2^2\right)=80\)
\(\Rightarrow2^{x+1}\cdot5=80\)
\(\Rightarrow2^{x+1}=16=2^4\)
\(\Rightarrow x+1=4\Rightarrow x=3\)
c) \(2^{2x-3}=16\cdot8\)
\(2^{2x-3}=2^4\cdot2^3=2^7\)
\(\Rightarrow2x-3=7\)
\(\Rightarrow2x=4\Rightarrow x=2\)
d) \(2^{x-2}\cdot2^x=64\)
\(\Rightarrow2^{x-2+x}=64=2^6\)
\(\Rightarrow x-2+x=6\)
\(\Rightarrow2x-2=6\)
\(\Rightarrow2x=8\Rightarrow x=4\)
Giải:
a) \(3^{x-2}=27.9\)
\(\Leftrightarrow3^{x-2}=3^3.3^2\)
\(\Leftrightarrow3^{x-2}=3^5\)
Vì \(3=3\)
Nên \(x-2=5\)
\(\Leftrightarrow x=5+2\)
\(\Leftrightarrow x=7\)
Vậy x = 7.
b) \(2^{x+1}+2^{x+3}=80\)
\(\Leftrightarrow2^{x+1}\left(1+2^2\right)=80\)
\(\Leftrightarrow2^{x+1}.5=80\)
\(\Leftrightarrow2^{x+1}=\dfrac{80}{5}=16\)
\(\Leftrightarrow2^{x+1}=2^4\)
Vì \(2=2\)
Nên \(x+1=4\)
\(\Leftrightarrow x=4-1\)
\(\Leftrightarrow x=3\)
Vậy x = 3.
c) \(2^{2x-3}=16.8\)
\(\Leftrightarrow2^{2x-3}=2^4.2^3\)
\(\Leftrightarrow2^{2x-3}=2^7\)
Vì \(2=2\)
Nên \(2x-3=7\)
\(\Leftrightarrow2x=7+3=10\)
\(\Leftrightarrow x=\dfrac{10}{2}=5\)
Vậy x = 5.
d) \(2^{x-2}.2^x=64\)
\(2^{2x-2}=2^6\)
Vì \(2=2\)
Nên \(2x-2=6\)
\(\Leftrightarrow2x=6+2=8\)
\(\Leftrightarrow x=\dfrac{8}{2}=4\)
Vậy x = 4.
Chúc bạn học tốt!
Ta có : \(\left|2x+4\right|+\left|4x+8\right|=0\left|2x+4\right|+\left|4x+8\right|=0\)
\(\Rightarrow\left|2x+4\right|+2.\left|2x+4\right|=\left|4x+8\right|=0\)
\(\Rightarrow\left|2x+4\right|\left(1+2\right)=0\)
=> |2x + 4| = 0
=> 2x + 4 = 0
=> 2x = -4
=> x = -2
1. Đề đúng phải là thế này: \(\left|2x+4\right|+\left|4x+8\right|=0\)
\(\Rightarrow\left|2x+4\right|=\left|4x+8\right|=0\)
\(\Rightarrow2x+4=4x+8=0\)
\(\Rightarrow x=-\frac{4}{2}=-\frac{8}{4}\)
\(\Rightarrow x=-2\)
2. Sửa lại đề : \(\left|x-5\right|-\left|x-7\right|=0\)
\(\Rightarrow\left|x-5\right|=\left|x-7\right|\)
\(\Rightarrow\orbr{\begin{cases}x-5=x-7\\x-5=-\left(x-7\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-5=-7\\x-5=-x+7\end{cases}}\)
( Loại trường hợp 1)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
3. \(\left|x+8\right|-\left|2x+2\right|=0\)
\(\Rightarrow\left|x+8\right|=\left|2x+2\right|\)
\(\Rightarrow\orbr{\begin{cases}x+8=2x+2\\x+8=-\left(2x+2\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+2=8\\x+8=-2x-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\3x=-10\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-\frac{10}{3}\end{cases}}\)
Bài 2:
a) \(\left(x-3\right)^3+27=0\)
\(\Leftrightarrow\left(x-3\right)^3=0-27\)
\(\Leftrightarrow\left(x-3\right)^3=-27\)
\(\Leftrightarrow\left(x-3\right)^3=\left(-3\right)^3\)
\(\Leftrightarrow x-3=-3\)
\(\Leftrightarrow x=\left(-3\right)+3\)
\(\Leftrightarrow x=0\)
b) \(-125-\left(x+1\right)^3=0\)
\(\Leftrightarrow\left(x+1\right)^3=-125-0\)
\(\Leftrightarrow\left(x+1\right)^3=-125\)
\(\Leftrightarrow\left(x+1\right)^3=\left(-5\right)^3\)
\(\Leftrightarrow x+1=-5\)
\(\Leftrightarrow x=\left(-5\right)-1\)
\(\Leftrightarrow x=-6\)
c) \(\left(2x-\dfrac{1}{4}\right)^2-\dfrac{1}{16}=0\)
\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=0+\dfrac{1}{16}\)
\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)
\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=\left(\dfrac{1}{4}\right)^2\)
\(\Leftrightarrow2x-\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow2x=\dfrac{1}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow2x=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{2}:2\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
d) \(2^x+2^{x+1}=24\)
\(\Leftrightarrow2^x+2^x.2=24\)
\(\Leftrightarrow2^x\left(1+2\right)=24\)
\(\Leftrightarrow2^x.3=24\)
\(\Leftrightarrow2^x=24:3\)
\(\Leftrightarrow2^x=8\)
\(\Leftrightarrow2^x=2^3\)
\(\Rightarrow x=3\)
e) \(\left|x+\dfrac{1}{5}\right|-\dfrac{1}{2}=1\)
\(\Leftrightarrow\left|x+\dfrac{1}{5}\right|=1+\dfrac{1}{2}\)
\(\Leftrightarrow\left|x+\dfrac{1}{5}\right|=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=-\dfrac{3}{2}\\x+\dfrac{1}{5}=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{17}{10}\\x=\dfrac{13}{10}\end{matrix}\right.\)
g) \(\left|x-3\right|+2x=10\)
\(\Leftrightarrow\left|x-3\right|=10-2x\)
\(\Leftrightarrow\left|x-3\right|=2.5-2x\)
\(\Leftrightarrow\left|x-3\right|=2\left(5-x\right)\)
(không chắc có nên làm tiếp câu g không, thấy đề cứ là lạ, có j sai sai...)
Bài 1:
a) \(2^7+2^9⋮10\)
Ta có: \(2^7+2^9=2^{4.1}.2^3+2^{4.2}.2\)
\(\Leftrightarrow\overline{A6}.2^3+\overline{B6}.2\)
\(\Leftrightarrow\overline{A6}.8+\overline{B6}.2\)
\(\Leftrightarrow\overline{C8}+\overline{D2}\)
\(\Leftrightarrow\overline{E0}\)
Mà \(\overline{E0}⋮10\) \(\Rightarrow2^7+2^9⋮10\)
b) \(8^{24}.25^{10}⋮2^{36}.5^{20}\)
Ta có: \(8^{24}.25^{10}=\left(2^3\right)^{24}.\left(5^2\right)^{10}\)
\(\Leftrightarrow2^{72}.5^{20}\)
Do \(2^{72}⋮2^{36}\) và \(5^{20}⋮5^{20}\) \(\Rightarrow8^{24}.25^{10}⋮2^{36}.5^{20}\)
c) \(3^{10}+3^{12}⋮30\)
Ta có: \(3^{10}+3^{12}=3^{4.2}.3^2+3^{4.3}\)
\(\Leftrightarrow\overline{A1}.3^2+\overline{B1}\)
\(\Leftrightarrow\overline{A1}.9+\overline{B1}\)
\(\Leftrightarrow\overline{C9}+\overline{B1}\)
\(\Leftrightarrow\overline{D0}⋮10\)
(Chứng minh chia hết cho 10 rồi chứng minh chia hết cho 3, mình chưa tìm được cách làm, chờ chút)
Câu 1:
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x102-101x101-51-50\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x\left(102-101\right)-\left(50+51\right)\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101-101\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x0}{2+4+6+8+...+2048}\)
\(A=0\)
Ta có:Số số hạng từ 2 đến 101 là:
(101-2):1+1=100(số hạng)
Do đó từ 2 đến 101 có số cặp là:
100:2=50(cặp)
\(B=\frac{101+100+99+...+3+2+1}{101-100+99-98+3-2+1}\)
\(B=\frac{5151}{51}\)
\(B=101\)
Câu 2:
a)697:\(\frac{15x+364}{x}\)=17
\(\frac{15x+364}{x}\)=697:17
\(\frac{15x+364}{x}\)=41
15x+364=41x
41x-15x=364
26x=364
x=14
Vậy x=14
b)92.4-27=\(\frac{x+350}{x}+315\)
\(\frac{x+350}{x}+315\)=341
\(\frac{x+350}{x}\)=26
x+350=26
x=26-350
x=-324
Vậy x=-324
c, 720 : [ 41 - ( 2x -5)] = 40
[ 41 - ( 2x -5)] =720:40
[ 41 - ( 2x -5)] =18
2x-5=41-18
2x-5=23
2x=28
x=14
Vậy x=14
d, Số số hạng từ 1 đến 100 là:
(100-1):1+1=100(số hạng)
Tổng dãy số là:
(100+1)x100:2=5050
Mà cứ 1 số hạng lại có 1x suy ra có 100x
Ta có:(x+1) + (x+2) +...+ (x+100) = 5750
(x+x+...+x)+(1+2+...+100)=5750
100x+5050=5750
100x=700
x=7
Vậy x=7
a) \(2^{4x+1}-8^{x+2}=0\)\(\Leftrightarrow2^{4x+1}-2^{3\left(x+2\right)}=0\)
\(\Leftrightarrow2^{4x+1}-2^{3x+6}=0\)\(\Leftrightarrow2^{4x+1}=2^{3x+6}\)
\(\Leftrightarrow4x+1=3x+6\)\(\Leftrightarrow4x-3x=6-1\)\(\Leftrightarrow x=5\)
Vậy \(x=5\)
b) \(3^2.9^{2x}=27^{x+3}\)\(\Leftrightarrow3^2.3^{2.2x}=3^{3\left(x+3\right)}\)\(\Leftrightarrow3^2.3^{4x}=3^{3x+9}\)
\(\Leftrightarrow3^{2+4x}=3^{3x+9}\)\(\Leftrightarrow2+4x=3x+9\)\(\Leftrightarrow4x-3x=9-2\)\(\Leftrightarrow x=7\)
Vậy \(x=7\)
c) \(8^{2x}.64^2=16^{x+4}\)\(\Leftrightarrow2^{3.2x}.2^{6.2}=2^{4\left(x+4\right)}\)\(\Leftrightarrow2^{6x}.2^{12}=2^{4\left(x+4\right)}\)
\(\Leftrightarrow2^{6x+12}=2^{4x+16}\)\(\Leftrightarrow6x+12=4x+16\)\(\Leftrightarrow6x-4x=16-12\)
\(\Leftrightarrow2x=4\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)