\(\in\) B(2x - 1)

<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

a, P(x)=2x4-6x3-x3+3x2-5x2+15x-2x+6

=2x3(x-3)-x2(x-3)-5x(x-3)-2(x-3)

=(x-3)(2x3-x2-5x-2)

=(x-3)(2x3-4x2+3x2-6x+x-2)

=(x-3)[2x2(x-2)+3x(x-2)+(x-2)]

=(x-3)(x-2)(2x2+3x+1)=(x-3)(x-2)(x+1)(2x+1)

b,P(x)=(x-3)(x-2)(x+1)(2x-2+3)

=(x-3)(x-2)(x+1)[2(x-1)+3]

=2(x-3)(x-2)(x-1)(x+1)+3(x-3)(x-2)(x+1)

vì x-3,x-2 là 2 SN liên tiếp nên tích của chúng chia hết cho 2 => (x-3)(x-2)(x+1) chia hết cho 2

=>3(x-3)(x-2)(x+1) chia hết cho 6

lập luận đc (x-3)(x-2)(x-1) là tích 3 SN liên tiếp nên chia hết cho 2 và 3 =>(x-3)(x-2)(x-1) cũng chia hết cho 6 

Tóm lại P(x) chia hết cho 6 với mọi x \(\in\) Z 

26 tháng 12 2017

a, Rút gọn Biểu thức:

A=\(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)

= \(\left(\dfrac{x+2}{2x-4}+\dfrac{-x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)

= \(\left(\dfrac{x+2+-x-2}{2x-4+2x+4}\right):\dfrac{2x}{x2+2x}\)

= 0 \(:\dfrac{2x}{x2+2x}\)

b, \(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)

Thay tất cả x= -4

=> \(\left(\dfrac{-4+2}{2-4-4}-\dfrac{-4-2}{2-4+4}\right):\dfrac{2.-4}{-4.2+2.-4}\)

= -16 : \(\dfrac{1}{3}\)

= -18

26 tháng 12 2017

Hỏi đáp Toán

11 tháng 7 2018

\(x^3+x=0\)

\(\Rightarrow x.\left(x^2+1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varnothing\end{cases}}\)

\(x^2-2x-3=0\)

\(\Rightarrow x.\left(x-2\right)=3\)

Vì \(x>x-2\)và \(x\inƯ\left(3\right)=\left\{3;-3\right\}\)

Các phần sau tương tự

Câu 1:Cho biểu thức \(P=\left(\frac{1}{x-1}-\frac{2}{x^2-1}\right):\left(\frac{1}{x+1}-\frac{2x-2}{x^2+x^2-x+1}\right)\)với \(x\ne\pm1\)a) Rút gọn P.b) Tìm tất cả giá trị nguyên của x để P đạt giá trị nguyên.Câu 2: 1. Cho đa thức \(P\left(x\right)=x^3-3x-1\)có 3 nghiệm phân biệt x1; x2; x3a) Chứng minh rằng: x1 + x2+ x3=0; x1x2 + x2x3 + x3x1 = -3 và x1x2x3=1b) Tính giá trị biểu thức: S = x19 + x29 + x39 ?2. Giải phương...
Đọc tiếp

Câu 1:

Cho biểu thức \(P=\left(\frac{1}{x-1}-\frac{2}{x^2-1}\right):\left(\frac{1}{x+1}-\frac{2x-2}{x^2+x^2-x+1}\right)\)với \(x\ne\pm1\)

a) Rút gọn P.

b) Tìm tất cả giá trị nguyên của x để P đạt giá trị nguyên.

Câu 2: 

1. Cho đa thức \(P\left(x\right)=x^3-3x-1\)có 3 nghiệm phân biệt x1; x2; x3

a) Chứng minh rằng: x+ x2+ x3=0; x1x+ x2x3 + x3x1 = -3 và x1x2x3=1

b) Tính giá trị biểu thức: S = x19 + x29 + x39 ?

2. Giải phương trình: \(\left(x^2-3x+2\right)\left(x^2+9x+20\right)=112\)

Bài 3: Cho tam giác ABC và điểm M di động trên đoạn BC. Gọi I là điểm bất kì trên đoạn AM và E là giao điểm của BI với cạnh AC.

a) Khi M và I thỏa mãn MC=2MB và AI=2IM. Tính tỉ số độ dài 2 đoạn AE và EC.

b) Khi M là trung điểm của BC, gọi F là giao điểm của CI với cạnh AB. Chứng minh rằng EF // BC ? 

0

=.....=...

kb vs mình nha

11 tháng 7 2018

   \(x^3+x=0\)

\(\Leftrightarrow\)\(x\left(x^2+1\right)=0\)

\(\Leftrightarrow\)\(x=0\)

    \(x^2-2x-3=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

Vậy...

       \(2x^2+5x-3=0\)

\(\Leftrightarrow\)\(\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+3=0\\2x-1=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}\)

Vậy...

        \(x+5x^2=0\)

\(\Leftrightarrow\)\(x\left(5x+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\5x+1=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}\)

Vậy...