![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có 3A= \(^{3^2+3^3+3^4+...+3^{100}}\)
3A-A=2A= (\(3^2+3^3+3^4+...+3^{100}\))-(\(3+3^2+3^3+...+3^{99}\))
2A= \(3^{100}-3\)
theo bài ra ta có
2A+3=\(3^n\)= \(3^{100}-3+3=3^n\)=\(^{3^{100}}\)\(\Rightarrow\)n=100
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (4x - 1)2 = 25.9
=> (4x - 1)2 = 52 . 32 = 152
=> 4x - 1 = 15
=> 4x = 16
=> x = 4
b) 2x + 2x+3 = 144
=> 2x + 2x . 23 = 144
=> 2x (1 + 23) = 144
=> 2x . 9 = 144
=> 2x = 16
=> x = 4
c) đề chắc chắn đúng chứ :v
d) (2x + 1)3 - 12 = 15
=> (2x + 1)3 = 27
=> (2x + 1)3 = 33
=> 2x + 1 = 3 => 2x = 2 => x = 1
2. 2x = 16 => 2x = 24 => x = 4
3x = 81 => 3x = 34 => x = 4
x3 = 64 => x3 = 43 => x = 4
x2 =81 => x2 = 92 => x = 9
![](https://rs.olm.vn/images/avt/0.png?1311)
1)
Ta thấy 99 là số lẻ, 20y là số chẵn với mọi y
=> Để 6x + 99 = 20y thì 6x là số lẻ
=> x = 0
Thay x = 0 ta có 60 + 99 = 20y
=> 1 + 99 = 20y
=> 100 = 20y
=> y = 100 ; 20
=> y = 5
Vậy x = 0, y = 5
`Answer:`
2.
Ta có: \(M=1+3+3^2+3^3+3^4+...+3^{98}+3^{99}+3^{100}\)
\(=\left(1+3\right)+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)
\(=4+3^2.13+3^{98}.13\)
\(=4+13.\left(3^2+...+3^{98}\right)\)
Vậy `M` chia `13` dư `4`
Ta có: \(M=1+3+3^2+3^4+...+3^{99}+3^{100}\)
\(=1+\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1+3.\left(1+3+3^2+3^3\right)+3^5.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)
\(=1+3.40+3^5.40+...+3^{97}.40\)
\(=1+40.\left(3+3^5+...+3^{97}\right)\)
Mà ta thấy \(40.\left(3+3^5+...+3^{97}\right)⋮40\)
Vậy `M` chia `40` dư `1`
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐặtA = \(2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2=2^{2n-1}-2\)
\(\Rightarrow2^{2n-1}=2^{101}\Rightarrow2n-1=101\)
\(\Rightarrow n=51\)
Đặt \(A=2+2^2+2^3+...+2^{100}\)
\(2A=2.\left(2+2^2+...+2^{100}\right)\)
\(2A=2^2+2^3+...+2^{101}\)
\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(A=2^{101}-2\)
Ta có : \(2^{2n-1}-2=2^{101}-2\)
\(\Rightarrow2^{2n-1}=2^{101}\)
\(\Rightarrow2n-1=101\)
\(\Rightarrow n=51\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A)\(M=1+3+3^2+...+3^9\)\(\Rightarrow3M=3+3^2+3^3+...+3^{10}\)\(\Rightarrow3M-M=\left(3+3^2+3^3+...+3^{10}\right)-\left(1+3+3^2+...+3^9\right)\)
\(\Rightarrow2M=3^{10}-1\)\(\Rightarrow2M+1=3^{10}\)\(\Rightarrow n=10\)
B) \(A=1+4^2+...+4^{99}\)\(\Rightarrow4A=4+4^3+4^4+...+4^{100}\)\(\Rightarrow4A-A=\left(4+4^3+4^4+...+4^{100}\right)-\left(1+4^2+...+4^{99}\right)\)
\(\Rightarrow3A=4^{100}+4-4^2-1\Rightarrow3A=4^{100}-13\Rightarrow3A+13=4^{100}\Rightarrow n=100\)
Đặt : `1+2+2^{2}+2^{3}+...+2^{99}=A`
`=>2A=2+2^{2}+2^{3}+2^{4}+...+2^{100}`
`=>2A-A=(2+2^{2}+2^{3}+2^{4}+...+2^{100})-(1+2+2^{2}+2^{3}+...+2^{99})`
`=>A=2^{100}-1`
Do đó, `x=100`