Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để mình giúp thỏ nghen!! hihihihi
\(abc=n^2-1;cba=\left(n-2\right)^2=n^2-4n+4\\ \Rightarrow abc-cba=\left(n^2-1\right)-\left(n^2-4n+4\right)\\ =n^2-1-n^2+4n-4\\ =4n-5\)
Ta lại có :
\(100\le cba\le999\\ \Rightarrow100\le\left(n-2\right)^2\le999\\ \Rightarrow10\le n-2\le31\\ \Rightarrow12\le n\le33\\ \Rightarrow12.4-5\le4n-5\le4.33-5\\ \Rightarrow43\le4n-5\le127\)
Mà \(abc-cba=99\left(a-c\right)⋮99\\ \Rightarrow4n-5⋮99\\ \Rightarrow4n-5=99\\ \Rightarrow n=26\\ \Rightarrow abc=675\)
Chúc bạn học tốt nhé !!!
Câu hỏi của Nguyễn Thị Linh Chi - Toán lớp 6 - Học toán với OnlineMath
Ta có: \(\overline{abc}-\overline{cba}=495\)
\(\Rightarrow100a+10b+c-100c-10b-a=495\)
\(\Rightarrow99a-99c=495\)
\(\Rightarrow99.\left(a-c\right)=495\Rightarrow a-c=5\Rightarrow a=5+c\)
Mà \(b^2=\overline{ac}\Rightarrow b^2=10a+c\)
=> \(b^2=10.\left(5+c\right)+c=50+11c\)
Vì \(\overline{ac}\) có 2 chữ số nên:
b^2 < 100
Mà b^2 > 50
=> b^2 thuộc 64,81
b^2 = 64 => 11c = 14 (vô lí)
b^2 = 81 => 11c = 31 (vô lí)
Vậy không có abc thỏa mãn
\(\begin{cases}100a+10b+c=n^2-1\left(1\right)\\100c+10b+a=n^2-4n+4\left(2\right)\end{cases}\)
Lấy (2) trừ (1) theo vế được :
\(99\left(c-a\right)=5-4n\)
Mặt khác, ta có \(100\le n^2-1\le999\) nên \(11\le n\le31\)
Xét n trong khoảng trên được n = 26 thỏa mãn bài toán.
Ta có:
\(\overline{abc}=100a+10b+c=n^2-1\left(1\right)\)
\(\overline{cba}=100c+10b+a=\left(n-2\right)^2=n^2-4n+4\left(2\right)\)
Từ (1) và (2) suy ra:
\(99a-99c=4n-5\\ \Leftrightarrow99\left(a-c\right)=4n-5\)
Suy ra: \(4n-5⋮99\)
Ta có: \(100\le n^2-1\le999\)
\(\Leftrightarrow101\le n^2\le1000\)
\(\Leftrightarrow11\le n\le31\)
\(\Leftrightarrow44\le4n\le124\)
\(\Leftrightarrow39\le4n-5\le119\)
Suy ra: \(4n-5=99\)
Suy ra: \(n=26\)
Suy ra: \(\overline{abc}=26^2-1=675\)
Đề sai; giải sửa luôn nhá
\(\hept{\begin{cases}\overline{abc}=n^2-1\\\overline{cba}=\left(n-2\right)^2\end{cases}}\Leftrightarrow\hept{\begin{cases}100a+10b+c=n^2-1\\100c+10b+a=n^2-4n+4\end{cases}}\)
\(\Rightarrow\left(100a+10b+c\right)-\left(100c+10b+a\right)=\left(n^2-1\right)-\left(n^2-4n+4\right)\)
\(\Leftrightarrow99a-99c=4n-5\)
\(\Leftrightarrow99\left(a-c\right)=4n-5\Rightarrow4n-5⋮99\)
Ta thấy \(100\le\overline{abc}=n^2-1\le999\Leftrightarrow101\le n^2\le1000\Leftrightarrow10< n< 31\)
\(\Rightarrow45< 4n-5< 119\Rightarrow4n-5=99\Rightarrow n=26\)
\(\Rightarrow\overline{abc}=26^2-1=675\)
Vậy \(\overline{abc}=675\)
\(\overline{abc}-\overline{cba}=100.a+10.b+c-100.c-10.b-a=99.a-99.c=\)
\(=99\left(a-c\right)=495\Rightarrow a-c=5\)
=> a.c xảy ra các trường hợp sau 6.1=6; 7.2=14; 8.3=24; 9.4=36
Ta có \(b^2=a.c\) nên a.c phải là 1 số chính phương => a=9 và b=4
\(\overline{abc}=\left\{904;914;...;994\right\}\)
100\(\le\)\(n^2\)-1=\(\overline{abc}\)\(\le\)999
\(\Rightarrow\)100<101\(\le\)\(n^2\)=\(\overline{abc}\)+1\(\le\)1000
\(\Rightarrow\)\(10^2\)<\(n^2\)<\(32^2\)\(\Rightarrow\)10<n<32
\(\overline{abc}\)-\(\overline{cba}\)=\(n^2\)-1-\(n^2\)+4n-4
\(\overline{abc}\)-\(\overline{cba}\)=(\(n^2\)-\(n^2\))+4n-1-4
\(\overline{abc}\)-\(\overline{cba}\)=0+4n-5
(100.a+10.b+c)-(100c+10b+a)=4n-5
99a-99c=4n-5
\(\Rightarrow\)4n-5\(⋮\)99(1)
Vì 10<n<32\(\Rightarrow\)35<4n<123(2)
Từ (1) và(2) \(\Rightarrow\)4n-5=99
\(\Rightarrow\)n=99+5 :4 =26
\(\overline{abc}\)=\(26^2\)-1
\(\overline{abc}\)=675
\(\overline{cba}\)=576
abc = một trong các số có 3 chữ số
OK