Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, 155+156= 155+155. 15 = 155. ( 15+1)=155. 16
vì 16 chia hết cho 16 hên 155+156 chia hết cho 16
a, 2006 chia hết cho 2 nên 2006n chia hết cho 2 và 2 chia hết cho 2 nên 2006n +2 chia hết cho 2
a) M chia hết cho 7 là rõ ràng vì các số hạng của M đều là lũy thừa của 7
\(M=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{59}+7^{60}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{59}\left(1+7\right)\)
\(=7.8+7^3.8+...+7^{59}.8\)
\(=\left(7+7^3+...+7^{59}\right).8\)
=> M cũng chia hết cho 9
Làm tương tự, để chứng minh M chia hết cho 50 thì ta nhóm số thứ nhất với số thứ ba,, số thứ hai với số thứ tư, số thứ ba với số thứ năm, v.v.
\(M=\left(7+7^3\right)+\left(7^2+7^4\right)+...+\left(7^{57}+7^{59}\right)+\left(7^{58}+7^{60}\right)\)
\(=7\left(1+7^2\right)+7^2\left(1+7^2\right)+...+7^{57}\left(1+7^2\right)+7^{58}\left(1+7^2\right)\)
\(=7.50+7^2.50+...+7^{57}.50+7^{58}.50\)
\(=\left(7+7^2+...+7^{57}+7^{58}\right).50\)
=> M cũng chia hết cho 50
b) Rút gọn M.
\(M=7+7^2+...+7^{59}+7^{60}\) (1)
=> Chia cả hai vế cho 7 ta có:
\(\frac{M}{7}=1+7+7^2+...+7^{59}\) (2)
Lấy (1) trừ cho (2) vế với vế và bỏ đi các thành phần triệt tiêu ta có:
\(M-\frac{M}{7}=7^{60}-1\)
\(\Rightarrow\frac{6}{7}M=7^{60}-1\)
\(\Rightarrow M=\frac{\left(7^{60}-1\right).7}{6}\)
\Bài 1 :
\(\left|x+1\right|+\left|x-4\right|+\left|x+2\right|\ge0\)
\(\Rightarrow\)\(4x-16\ge0\)
Mà \(-16< 0\)nên \(4x>16\)\(\Rightarrow\)\(x>4\)
Do đó :
\(x+1+x-4+x+2=4x-16\)
\(\Leftrightarrow\)\(3x+1-4+2=4x-16\)
\(\Leftrightarrow\)\(3x-1=4x-16\)
\(\Leftrightarrow\)\(4x-3x=16-1\)
\(x=15\)
Lời giải:
Gọi $d=ƯCLN(5n+17, 2n+11)$
$\Rightarrow 5n+17\vdots d; 2n+11\vdots d$
$\Rightarrow 5(2n+11)-2(5n+17)\vdots d$
$\Rightarrow 21\vdots d$
Vì $21=3.7$ nên để $d=1$ (tức là ps tối giản) thì $(d,3)=(d,7)=1$
Tức là $2n+11\not\vdots 3$ và $2n+11\not\vdots 7$
$\Rightarrow 2n+2\not\vdots 3$ và $2n+4\not\vdots 7$
$\Rightarrow 2(n+1)\not\vdots 3$ và $2(n+2)\not\vdots 7$
$\Rightarrow n+1\not\vdots 3$ và $n+2\not\vdots 7$
$\Rightarrow n+1-6\not\vdots 3$ và $n+2-7not\\vdots 7$
$\Rightarrow n-5\not\vdots 3$ và $n-5\not\vdots 7$
$\Rightarrow n-5\not\vdots 21$
$\Rightarrow n\neq 21k+5$ với $k$ tự nhiên.