Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sao kì zậy! Mình tính được = 95 cơ. Sorry nhưng ko biết cách giải.
Theo tớ thì số cần tìm chia 5 dư 4 nên có tận cùng là 4 hoặc 9! mà số lại chia 2 dư 1 nên là số lẻ --> có tận cùng là 9.
gọi số cần tìm là a9 đi bạn. thì
a9 chia 3 dư 2 nên a chia 3 dư 2 (do a+9 chia 3 sẽ dư 2 mà 9 chia hết cho 3)
như thế a có thể bằng 2,5,8,11....
thử dần vào nà: 29 chia 4 dư 1 bị loại rồi
59 chia 4 dư 3 ( 56 : 4 = 16) --> ok
59 chia 6 dư 5 ( 54 chia 6 được 9 mà)-->được rồi nè!
chúc bạn may mắn!
Gọi số cần tìm là a :
Khi đó a + 1 chia hết cho 5
a + 1 chia hết cho 7
a + 1 chia hết cho 10
Nên a + 1 thuộc BCNN (5;7;10) = 70
=> a + 1 = 70
=> a = 69
Vậy số cần tìm là 69
chia 11 dư 5 ⇔ a = 11m + 5 ⇒ a + 6 = (11m + 5 )+ 6 = 11m + 11 = 11.(m + 1) chia hết cho 11. (m ∈ N)
Vì 77 chia hết cho 11 nên (a + 6) + 77 cũng chia hết cho 11 ⇔ a + 83 chia hết cho 11. (1)
a chia 13 dư 8 ⇔ a = 13n + 8 ⇒ a + 5 = (13n + 8) + 5 = 13n + 13 = 13.(n + 1) chia hết cho 11. (n ∈ N)
Vì 78 chia hết cho 13 nên (a + 5) + 78 cũng chia hết cho 13 ⇔ a + 83 chia hết cho 13. (2)
Từ (1) và (2) suy ra a + 83 chia hết cho BCNN(11; 13) ⇔ a + 83 chia hết cho 143 ⇒ a = 143k - 83 (k ∈ N*)
Để a nhỏ nhất có 3 chữ số ta chọn k = 2. Khi đó a = 203
Gọi số tự nhiên nhỏ nhất có 3 chữ số cần tìm là a
Theo bài ra ta có: a chia 11 dư 5 \(\Rightarrow\)a=11m+5
\(\Rightarrow\)a+6=(11m+5)+6=11m+11=11(m+1) chia hết cho 11\(\left(m\in N\right)\)
Vì 77 chia hết cho 11 nên (a+6)+77 chia hết cho 11
=> a+83 chia hết cho 11(1)
a chia 13 dư 8 => a=13n+8
=> a+5=(13n+8)+5=13n+13=13(n+1) chia hết cho 13\(\left(n\in N\right)\)
Vì 78 chia hết cho 13 nên (a+5)+78 chia hết cho 13
=> a+83 chia hết cho 13(2)
Từ (1) và (2) suy ra (a+83) chia hết cho BCNN(11;13) => (a+83) chia hết cho 143
=> a=143k - 43 (k \(\in\)N*)
Để a là số tự nhiên nhỏ nhất có 3 chữ số thì k=2
=> a=143 x 2 - 43 = 203
Bài làm:
Gọi số đó là x
Do x chia 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
=> ﴾x ‐ 1﴿ chia hết 2
﴾x ‐ 2﴿ chia hết 3
﴾x ‐ 3﴿ chia hết 4
﴾x ‐ 4﴿ chia hết 5
﴾x ‐ 5﴿ chia hết 6
﴾x ‐ 6﴿ chia hết
=> ﴾x + 1﴿ chia hết cho cả 2, 3, 4, 5, 6, 7
=> ﴾x + 1﴿ là BC﴾2;3;4;5;6;7﴿
Mà x nhỏ nhất
=>﴾ x+ 1﴿ là BCNN﴾2;3;4;5;6;7﴿ = 5.12.7 = 420 => x = 419
Gọi số tự nhiên thỏa mãn những tính chất của đề bài là nn
Vì nn chia 1717 dư 44 , chia 1919 dư 1111 nên:
n=17k+4=19t+11(k,t∈N)n=17k+4=19t+11(k,t∈N)
⇒19t+7=17k⋮17⇒19t+7=17k⋮17
⇔17t+2t+7⋮17⇔17t+2t+7⋮17
⇔2t+7⋮17⇔2t+7⋮17
Do đó 2t+7=17m2t+7=17m với mm là một số tự nhiên nào đó.
⇔2t=17m−7⇔2t=17m−7
Vì 2t2t chẵn nên 17m−717m−7 cũng chẵn. Do đó mm lẻ
⇒m≥1⇒2t=17m−7≥10⇒m≥1⇒2t=17m−7≥10
⇔t≥5⇔t≥5
Suy ra n=19t+11≥19.5+11=106n=19t+11≥19.5+11=106
Thử lại thấy đúng
Vậy số nn nhỏ nhất thỏa mãn đkđb là 106106
Bài 3:
-Nếu pp chẵn thì p+10p+10 chẵn. Mà p+10>2p+10>2 nên p+10p+10 không thể là số nguyên tố.
-Nếu pp lẻ thì p+3p+3 chẵn. Mà p+3>2p+3>2 nên p+3p+3 không thể là số nguyên tố.
Vậy không tồn tại số nguyên tố pp nào thỏa mãn p+3p+3 và p+10p+10 đồng thời là số nguyên tố.