Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a:\frac{6}{7}=a.\frac{7}{6}=\frac{7a}{6}\)là số tự nhiên => 7a chia hết cho 6
Mà (7;6)=1 => a chia hết cho 6 (1)
\(a:\frac{10}{11}=a.\frac{11}{10}=\frac{11a}{10}\)là số tự nhiên => 11a chia hết cho 10
Mà (11;10)=1 => a chia hết cho 10 (2)
Từ (1) và (2) => \(a\in BC\left(6;10\right)\)
Mà a nhỏ nhất => a = BCNN(6;10) = 30
Vậy a = 30
Vì a: \(\frac{6}{7}\)= Z => \(a.\frac{7}{6}\)= Z=> a thuộc B (6)
vì \(a:\frac{10}{11}=Z=>a.\frac{11}{10}=Z\)=>chữ số hàng đơn vị của a là 0
Để thỏa mãn thì a = 30 vì \(30\in B\left(6\right)\)là STN nhỏ nhất có chữ số 0 bên hàng đơn vị
\(a:\frac{6}{7}\)\(=\frac{7a}{6}\) Mà ƯCLN(7;6)=1 nên \(a\in\) B(6)
\(a:\frac{10}{11}=\frac{11a}{10}\) Mà ƯCLN(10;11)=1 nên a\(\in\) B(10)
Để A nhỏ nhất \(\Leftrightarrow\) A=BCNN(6;10)=30
Vậy số A phải tìm là 30
\(a:\frac{6}{7}=\frac{7a}{6}\). Mà ƯCLN(7 ; 6) = 1 nên a \(\in\) B(6)
\(a:\frac{10}{11}=\frac{11a}{10}\). Mà ƯCLN(11 ; 10) = 1 nên a \(\in\) B(10)
Để a nhỏ nhất <=> a = BCNN(6 ; 10) = 30
Vậy a = 30
theo de bai a:6/7 =a.7/6 thuoc N nen 7a :6 ===>A:6(vi 7 va 6 la so nguyen to cung nhau) ; a:10/11=a.11/10 thuoc N nen 11a:10 ===>a:10(vi 11 va 10 la so nguyen to cung nhau).nhu vay a la BC(6 ,10)
de a nho nhat thi a=BCNN
vay so phai tim la 30
Dù đăng cách đây lâu rồi nhưng vẫn thích làm bài anh Tú đăng :P
Theo đề bài ta có:
\(\dfrac{a}{b}_{MIN}\)
\(\Rightarrow a_{MIN};b_{MAX}\)
\(\dfrac{a}{b}:\dfrac{9}{14}=N\Rightarrow\dfrac{a}{b}.\dfrac{14}{9}=N\Rightarrow a\in B\left(9\right);b\inƯ\left(14\right)\)
\(\dfrac{a}{b}:\dfrac{21}{35}=N\Rightarrow\dfrac{a}{b}.\dfrac{35}{21}=N\Rightarrow a\in B\left(21\right);b\inƯ\left(35\right)\)
\(a_{MIN}\Rightarrow a\in BCNN\left(9;21\right)\Rightarrow a=63\)
\(b_{MAX}\Rightarrow b\in UCLN\left(14;35\right)\Rightarrow b=7\)\(\)
Phân số cần tìm là \(\dfrac{63}{7}\)
Câu này dễ mà! :-)
Trả lời: 0