Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi so phải tìm là X
Theo đề bài ta co X+2 chia hết cho 3,4,5,6
suy ra X+2 là bội chung của 3,4,5,6
VCNN{3;4;5;6}=60 nên X+2=60.N
Do đó X=60.N-2{N=1;2;3;4...}
mặt khác X chia hết cho 11 lần lượt cho n = 1;2;3...
Ta thấy N=7 thì x=418 chia hết cho 11
vậy số nhỏ nhất phả tìm là 418
Câu a dễ ợt mà nó xưa lắm rùi
Gọi là số nhỏ nhất thỏa a chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4
Thế thì a + 2 chia hết cho 3, 4, 5 và 6
=> a + 2 là BC (3, 4, 5, 6)
BCNN (3, 4, 5, 6) = 60
=> a + 2 là B(60) = { 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, ...}
Trong các số trên chỉ có số 600 là thỏa
vì a + 2 = 600
=> a = 600 - 2 = 598 chia hết cho 13.
Vậy a = 598
Câu b cũng vậy
Ta có:
4n - 5
= 4n - 2 - 3
= 2(2n - 1) - 3
4n - 5⋮2n - 1
⇔2(2n - 1) - 3⋮2n - 1
2(2n - 1)⋮2n - 1
=>3⋮2n - 1
hay 2n - 1∈Ư(3)
Ư(3) = {1;-1;3;-3}
Với 2n - 1 = 1 ⇔ 2n = 1 + 1 = 2 ⇔ n = 2 : 2 = 1
Với 2n - 1 = -1 ⇔ 2n = -1 + 1 = 0 ⇔ n = 0 : 2 = 0
Với 2n - 1 = 3 ⇔ 2n = 3 + 1 = 4 ⇔ n = 4 : 2 = 2
Với 2n - 1 = -3 ⇔ 2n = -3 + 1 = -2 ⇔ n = -2 : 2 = -1
Vì n ∈ N nên n = {0;1;2}
Gọi số tự nhiên nhỏ nhất đó là a
Ta có : a chia 4 dư 3
a chia 5 dư 4
a chia 6 dư 5
=> a + 1 \(⋮\)4, 5, 6 và a+1 là BC(4,5,6)
Ta có 4=\(2^2\) 5=5 6=2.3
=>BCNN(4,5,6)= \(2^2\). 5 . 3 = 60
=> a+1 \(\in\)B(60) ={ 60, 120, 180, ..... }
=> a \(\in\){ 59 , 119 , 179 , .....}
Mà a \(⋮\)7 và là số nhỏ nhất nên a= 119
VẬy số cần tìm là 119
so đo cong với 1 chia hết cho 4 ; 5;6 và số đo nho nhat nen thuoc BCNN
den day thi tu lam
Gọi số đó là A
Ta có:A chia 4 dư 3
A chia 5 dư 4
A chia 6 dư 5
=>(A+1) chia hết cho 4,cho 5,cho 6
=>A+1\(\in\)BC(4,5,6}
Mà A nhỏ nhất nên A=BCNN(4,5,6)
Ta lại có:4=22
5=5
6=2.3
=>A+1=22.3.5=60
=>A=59
Vậy số cần tìm là:59