K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )

Tương tự: A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

=>2q = 29(p – q) – 23 nhỏ nhất

=> p – q nhỏ nhất

Do đó p – q = 1 => 2q = 29 – 23 = 6

=> q = 3

b)126: a dư 25=>a khác 0 ; 1;126

=>126-25=101 chia hết cho a

Mà 101=1.101

=>a=1(L) hoặc a=101(TM)

Vậy a=101

17 tháng 3 2020

gọi số cần tìm là A :

chia cho 29 dư 5

A = 29 x p + 5 ( p \(\in\)N )

A = 31 x q + 28 ( q \(\in\)N )

nên :

29 x p + 5 = 31 x q + 28 

=> 29 x ( p - q ) = 2 x q + 23

ta có :

2 x q + 23 là số lẻ

=> 29 x ( p - q )  là số lẻ

vậy p - q = 1

theo giả thiết phải tìm A  nhỏ nhất :

=> 2q = 29 x ( p - q ) - 23 nhỏ nhất

=> q nhỏ nhất ( A = 31 x q + 28 )

=> p - q nhor nhất

suy ra : 2 x q = 29 x 1 - 23 = 6 

=> q = 6 : 2 = 3

vậy số cần tìm là : A = 31 x q + 28 =31 x 3 + 28 = 131

10 tháng 12 2015
  • vì a chia cho 29 dư 5=>a=29a'+5(a'\(\in\)N)
  • vì a chia cho 31 dư 28 =>a=31b'+28

=>a= 29a'+5=31b'+28

=29(a'-b')=2b'+23

Ta thấy: 2b'+23 là số lẻ=> 29(a'-b'0 cũng là số lẻ

theo đề bài a nhỏ nhất=>b' nhỏ nhất

                                => a'-b' nhỏ nhất

do đố b'=1

vậy số cần tìm là 121

 

6 tháng 12 2016

=121 day

chuan100%luon

Gọi số tự nhiên cần tìm là A

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )

Tương tự:  A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28 => 29(p – q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

=>2q = 29(p – q) – 23 nhỏ nhất

=> p – q nhỏ nhất

Do đó p – q = 1 => 2q = 29 – 23 = 6

=> q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121

14 tháng 3 2020

Bạn (¯`*•.¸,¤°´✿.。.:*ĞĨŔĹ✿Čá✿ŤíŃĤ*.:。.✿`°¤,¸.•*´¯) (ღ๖ۣۜsky ๖ۣۜteamʚɞ ★ (❤youtube ) ) chép bài của bạn khác không ghi nguồn. Lát báo cáo cô Chi

23 tháng 2 2016

Gọi a là số phải tìm

Vì a chia 29 dư 5 nên a chia hết cho 24

Vì a chia 31 dư 28 nên a chia hết cho 3

Theo đề bài ta có a là số tự nhiên nhỏ nhất nên a là BCNN(24, 3)=24

Vậy số cần tìm là 24

30 tháng 6 2015

Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.

Hiệu của 31 và 29:         31 - 29 = 2

Thương của phép chia cho 31 là:

(29-23) : 2 = 3

            (Hoặc. Gọi a là thương lúc này của phép chia cho 31.

                        2 x a + 23 = 29        =>     a = 3)

Số cần tìm là:

31 x 3 + 28 = 121

Đáp số:  121

30 tháng 6 2015

Gọi số t nhiên cần tìm là A

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )

Tương tự:  A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

                                    =>2q = 29(p – q) – 23 nhỏ nhất

                                    => p – q nhỏ nhất

Do đó p – q = 1 => 2q = 29 – 23 = 6

                        => q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121

9 tháng 3 2019

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )

Tương tự:  A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28 => 29(p – q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

=>2q = 29(p – q) – 23 nhỏ nhất

=> p – q nhỏ nhất

Do đó p – q = 1 => 2q = 29 – 23 = 6

=> q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121

31q + 28 ( q ∈ N ) nên 
31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q ) 
vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121 
Thử lại 121 = 31 . 3 + 28 thỏa mãn đề bài

Gọi số tự nhiên cần tìm là A

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )

Tương tự:  A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28 => 29(p – q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

=>2q = 29(p – q) – 23 nhỏ nhất

=> p – q nhỏ nhất

Do đó p – q = 1 => 2q = 29 – 23 = 6

=> q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121

KHAM KHẢO <>

15 tháng 4 2019

Số đó là 121 nha bạn 

21 tháng 9 2019

Chia cho 29 dư 5 nghĩa là : 

A = 29p + 5 \(\left(p\in N\right)\)

Chia cho 31 dư 28 nghĩa là : 

 A = 31q + 28  \(\left(q\in N\right)\)

Nên \(29p+5=31q+28\Rightarrow29\left(p-q\right)=2q+23\)

Ta thấy: 2q + 23 là số lẻ  \(\Rightarrow\) 29(p-q) cũng là số lẻ \(\Rightarrow p-q\ge1\)

Theo giả thiết A nhỏ nhất \(\Rightarrow\) q nhỏ nhất (A = 31q + 28)

\(\Rightarrow\)2q = 29(p – q) – 23 nhỏ nhất

\(\Rightarrow\) p – q nhỏ nhất

Do đó p – q = 1 \(\Rightarrow\) 2q = 29 – 23 = 6

\(\Rightarrow\) q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121

Chúc bạn học tốt !!!

12 tháng 5 2021

Gọi số tự nhiên cần tìm là A

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )

Tương tự: A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

=>2q = 29(p – q) – 23 nhỏ nhất

=> p – q nhỏ nhất

Do đó p – q = 1 => 2q = 29 – 23 = 6

=> q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121

9 tháng 10 2016

Gọi số tự nhiên cần tìm là A 

Chia cho 29 dư 5 nghĩa là : 29p + 5 ( p thuộc N )

Tương tự A = 31q + 28 ( q thuộc N )

Nê 29p + 5 = 31q + 28 => 29.( p - q ) = 2q + 23

Ta thaayd : 2q + 23 là số lẻ => 29. ( p - q ) cũng là số lẻ => p - q >=1

theo giả thiết A nhỏ nhất => q nhỏ nhất ( A = 31q + 28 )

=> 2q = 29.( p - q ) -23 nhỏ nhất

=> p - q nhỏ nhất

do đó p - q =1  => 2q = 29 - 23 = 6

=> q = 3

A = 31q + 28 = 31.3 + 28 = 121

28 tháng 9 2021

Gọi số tự nhiên cần tìm là A

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 (p  N)

Tương tự:  A = 31q + 28 (q  N)

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p - q) cũng là số lẻ => p - q  1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

                                         => 2q = 29(p - q) - 23 nhỏ nhất

                                         => p - q nhỏ nhất

Do đó p - q = 1 => 2q = 29 - 23 = 6

                         => q = 3

28 tháng 9 2021

Gọi số tự nhiên cần tìm là \(A\)

Chia cho 29 dư 5 nghĩa là: \(A=29p+5\left(p\in N\right)\)

Tương tự:  \(A=31q+28\left(q\in N\right)\)

Nên: \(29p+5=31q+28\) \(\Rightarrow\) \(29-\left(p-q\right)=2q+23\)

Ta thấy: \(2q+23\) là số lẻ \(\Rightarrow\) \(29\left(p-q\right)\) cũng là số lẻ \(\Rightarrow\)\(p-q\ge1\)

Theo giả thiết A nhỏ nhất

\(\Rightarrow\) q nhỏ nhất \(\left(A=31q+28\right)\)

\(\Rightarrow\)\(2q=29\left(p-q\right)-23\) nhỏ nhất

\(\Rightarrow\) \(p-q\) nhỏ nhất

Do đó:

\(p-q=1\) \(\Rightarrow\) \(2q=29-23=6\)

\(\Rightarrow\) \(q=3\)

Vậy số cần tìm là: \(A=31q+28=31.3+28=121\)