K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

a) Vì n thuộc N nên 2n + 1 thuộc N

=> 17 chia hết cho 2n + 1 <=> 2n + 1 thuộc Ư( 17 ) = { 1; 17 }

Ta có bảng sau:

2n+1117
2n016
n08

Vậy để 17 chia hết cho 2n + 1 thì n = 0;8

b) Vì n thuộc N nên 2n + 3 thuộc N;2n - 1 thuộc N

=> 2n + 3 chia hết cho 2n - 1

=> (2n - 1) + 4 chia hết cho 2n - 1

=> 4 chia hết cho 2n - 1   ( vì 2n - 1 chia hết cho 2n - 1)

=> 2n - 1 thuộc Ư( 4 ) = { 1; 2; 4 }

Vì 2n - 1 chia 2 dư 1 nên 2n - 1 = 1

       => 2n = 2   => n = 1

Vậy để 2n + 3 chia hết cho 2n - 1 thì n = 1.

5 tháng 11 2016

a.

Ta có: \(405^n=......5\)

\(2^{405}=2^{404}\cdot2=\left(.......6\right)\cdot2=.......2\)

\(m^2\) là số chính phương nên có chữ số tận cùng khác 3. Vậy A có chữ số tận cùng khác 0 \(\Rightarrow A⋮10\)

b.

\(B=\frac{2n+9}{n+2}+\frac{5}{n+2}\frac{n+17}{ }-\frac{3n}{n+2}=\frac{2n+9+5n+17-3n}{n+2}=\frac{4n+26}{n+2}\)

\(B=\frac{4n+26}{n+2}=\frac{4\left(n+2\right)+18}{n+2}=4+\frac{18}{n+2}\)

Để B là số tự nhiên thì \(\frac{18}{n+2}\) là số tự nhiên

\(\Rightarrow18⋮\left(n+2\right)\Rightarrow n+2\inư\left(18\right)=\left\{1;2;3;6;9;18\right\}\)

+ \(n+2=1\Leftrightarrow n=-1\) ( loại )

+ \(n+2=2\Leftrightarrow n=0\)

+ \(n+2=3\Leftrightarrow n=1\)

+ \(n+2=6\Leftrightarrow n=4\)

+ \(n+2=9\Leftrightarrow n=7\)

+ \(n+2=18\Leftrightarrow n=16\)

Vậy \(n\in\left\{0;1;4;7;16\right\}\) thì \(B\in N\)

c.

Ta có \(55=5\cdot11\)\(\left(5;1\right)=1\)

Do đó \(C=\overline{x1995y}⋮55\)\(\Leftrightarrow\)\(\begin{cases}C⋮5\\C⋮11\end{cases}\) \(\frac{\left(1\right)}{\left(2\right)}\)

\(\left(1\right)\Rightarrow y=0\) hoặc \(y=5\)

+ \(y=0\div\left(2\right)\Rightarrow x+9+5-\left(1+9+0\right)⋮11\Rightarrow x=7\)

+ \(y=5\div\left(2\right)\Rightarrow x+9+5-\left(1+9+5\right)⋮11\Rightarrow x=1\)

5 tháng 11 2016

Chết thiếu câu c nữa

18 tháng 12 2016

không tìm được n bạn