Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn sửa lại dòng thứ 5 của câu 1 giúp mình:
\(-\frac{1}{24}\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\)
2)
\(Y_n=\frac{\frac{\left(n+4\right)!}{n!}}{\left(n+2\right)!}-\frac{143}{4.n!}\)
\(=\frac{\left(n+4\right)\left(n+3\right)}{n!}-\frac{143}{4n!}\)
\(=\frac{1}{4n!}\left(2n+19\right)\left(2n-5\right)\)
\(Y_n< 0\)
<=> \(\frac{1}{4n!}\left(2n+19\right)\left(2n-5\right)\)<0
<=> \(\left(2n+19\right)\left(2n-5\right)< 0\)
<=> \(-\frac{19}{2}< n< \frac{5}{2}\)
Đối chiếu với n \(\ge\)1 và n là số tự nhiên
ta có: n = 1 hoặc n = 2
Vậy các số hạng âm của dãy số ( Y_n) là:
\(Y_1=-\frac{63}{4};Y_2=-\frac{23}{8}\)
1) \(X_n=\frac{5}{4}.\frac{\left(n-2\right)!}{\left(n-4\right)!}-\frac{\left(n-1\right)!}{4!\left(n-5\right)!}+\frac{\left(n-1\right)!}{3!\left(n-4\right)!}\)
\(=\frac{5}{4}.\left(n-2\right)\left(n-3\right)-\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n-4\right)}{24}+\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{6}\)
= \(\left(n-2\right)\left(n-3\right)\left(\frac{5}{4}-\frac{\left(n-1\right)\left(n-4\right)}{24}+\frac{n-1}{6}\right)\)
= \(\left(n-2\right)\left(n-3\right)\left(-\frac{n^2}{24}+\frac{3n}{8}+\frac{11}{12}\right)\)
= - \(\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\)
Để \(X_n>0\)
<=> \(\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\) < 0
<=> n \(\in\left(-2;2\right)\cup\left(3;11\right)\)
Đối chiếu đk n \(\ge\)5
ta có n \(\in\) [ 5; 11 ) và n là số tự nhiên.
Các số hạng dương là:
\(X_5;X_6;...;X_{10}\) ( tự thay vào rồi tính kết quả nhé)
VD: \(X_5=\frac{5}{4}.A^2_3-C^4_4+C^3_4=\frac{21}{2}\)
a)
Với \(n=1\) .
\(2^n=2^2=4;2n+1=2.2+1=5\).
Với n = 1 thì \(2^n< 2n+1\).
Với \(n=2\)
\(2^n=2^3=8;2n+1=2.3+1=7\)
Với n = 2 thì \(2^n>2n+1\).
Ta sẽ chứng minh bằng quy nạp giả thiết:
Với \(n\ge2\) thì \(2^n>2n+1\). (*)
Với n = 2 (*) đúng .
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(2^k>2k+1\).
Ta sẽ chứng minh nó cũng đúng với \(n=k+1\).
Nghĩa là: \(2^{k+1}>2\left(k+1\right)+1\).
Thật vậy từ giả thiết quy nạp ta có:
\(2^{k+1}=2.2^k>2.\left(2k+1\right)=4k+2>2\left(k+1\right)+1\) (với \(k\ge2\)).
Vậy điều phải chứng minh đúng với mọi n.
b)
Tương tự như câu a ta kiểm tra được với \(n\ge7\) thì \(2^n>n^2+4n+5\). (*)
Với n = 7.
\(2^7=128\); \(n^2+4n+5=7^2+4.7+5=82\).
Vì \(2^7>7^2+4.7+7\) nên (*) đúng với n = 7.
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(2^k>k^2+4k+5\).
Ta cần chứng minh nó cũng đúng với \(n=k+1\).
Nghĩa là: \(2^{k+1}>\left(k+1\right)^2+4\left(k+1\right)+5\).
Thật vậy từ giả thiết quy nạp suy ra:
\(2^{k+1}=2.2^k>2\left(k^2+4k+5\right)=2k^2+8k+10\)
\(=\left(k+1\right)^2+4\left(k+1\right)+5+k^2+2k\)\(>\left(k+1\right)^2+4\left(k+1\right)+5\).
Vậy điều cần chứng minh đúng với mọi \(n\ge7\).
Ta có:
\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)
Từ giả thiết \(\Rightarrow n,k\ge2\)
Ta có:
\(\hept{\begin{cases}n^3-n-1>1,n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}n^3-n-1=p^r\\n^2+n-1=p^s\end{cases}}\) trong đó \(\hept{\begin{cases}r\ge s\ge0\\r+s=k\end{cases}}\)
\(\Rightarrow n^3-n-1⋮n^2+n-1\)
\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)
\(\Rightarrow n-2⋮n^2+n-1\) (1)
Mặt khác :
\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)
\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\) (2)
Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\hept{\begin{cases}p=5\\k=2\end{cases}}\)
Vậy bộ số cần tìm là (n,k,p)=(2,2,5)
a)
Với \(n=1\).
\(n^5-n=1^5-1=0\).
Do 0 chia hết cho 5 nên điều cần chứng minh đúng với n = 1.
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(k^5-k⋮5\).
Ta cần chứng minh nó đúng với \(n=k+1\).
Nghĩa là: \(\left(k+1\right)^5-\left(k+1\right)⋮5\).
Thật vậy:
\(\left(k+1\right)^5-\left(k+1\right)=C^0_5k^0+C^1_5k+...+C^5_5k^5-k-1\)
\(=1+C^1_5k+...+k^5-k-1\)
\(=C^1_5k+...+C^4_5k^4+k^5-k\)
Do mỗi \(C_5^1;C^2_5;C^3_5;C^4_5\) đều chia hết cho 5 và do gải thiết quy nạp \(k^5-k⋮5\) nên \(C^1_5k+...+C^4_5k^4+k^5-k\) chia hết cho 5.
Vì vậy: \(\left(k+1\right)^5-\left(k+1\right)⋮5\).
Vậy điều phải chứng minh đúng với mọi n.
b)
Tổng bình phương 3 số tự nhiên liên tiếp là: \(n^3+\left(n+1\right)^3+\left(n+2\right)^3\).
Ta cần chứng minh \(n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9,\forall n\in N^{\circledast}\).
Với n = 1.
\(n^3+\left(n+1\right)^3+\left(n+2\right)^3=1^3+2^3+3^3=36\).
Vậy điều cần chứng minh đúng với \(n=1\).
Giả sử điều cần chứng minh đúng với n = k.
Nghĩa là: \(k^3+\left(k+1\right)^3+\left(k+2\right)^3⋮9\).
Ta cần chứng minh nó đúng với \(n=k+1\).
Nghĩa là: \(\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3⋮9\)
Thật vậy:
\(\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3\)\(=\left(k+1\right)^3+\left(k+2\right)^3+k^3+3.3k^2+3.k.3^2+3^3\)
\(=\left(k+1\right)^3+\left(k+2\right)^3+k^3+9k^2+27k+81\)
Theo giả thiết quy nạp \(k^3+\left(k+1\right)^3+\left(k+2\right)^3⋮9\) và \(9k^2+27k+81=9\left(k^2+3k+9\right)⋮9\).
Nên \(\left(k+1\right)^3+\left(k+2\right)^3+k^3+9k^2+27k+81⋮9\).
Vậy điều phải chứng minh đúng với mọi n.
\(n\ge2\)
\(\frac{3.\left(n+1\right)!}{3!.\left(n-2\right)!}-\frac{3.n!}{\left(n-2\right)!}=52\left(n-1\right)\)
\(\Leftrightarrow\frac{\left(n+1\right)n\left(n-1\right)}{2}-3n\left(n-1\right)=52\left(n-1\right)\)
\(\Leftrightarrow n\left(n+1\right)-6n=104\)
\(\Leftrightarrow n^2-5n-104=0\Rightarrow\left[{}\begin{matrix}n=13\\n=-8\left(l\right)\end{matrix}\right.\)
s bi loi nhi?
tim n?
3C\(^0\)\(_{2n}\) \(-\) \(\dfrac{1}{2}\)C\(^1\)\(_{2n}\) \(-\) \(\dfrac{1}{4}\)C\(^3\)\(_{2n}\) +...+ \(\dfrac{3}{2n+1}\)C\(^{2n}\)\(_{2n}\) \(=\) \(\dfrac{10923}{5}\)
\(\Leftrightarrow\dfrac{\left(n+5\right)!}{5!.n!}=\dfrac{\left(n+3\right)!.5}{n!}\)
\(\Leftrightarrow\left(n+5\right)\left(n+4\right)=5!.5=600\)
\(\Leftrightarrow n^2+9n-580=0\Rightarrow n=20\)
☃☃