Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25 < 33 = 27 < 34 < 35 = 243 < 260
Vậy n \(\in\){ 3;4;5 }.
\(2^5< 3^n< 260\)
\(\Rightarrow2^5< 3^4\le3^n\le3^5< 260\)
\(\Leftrightarrow n\in\left\{4;5\right\}\)
Vậy...
bạn ơi mình mới phát hiện điều kì lạ là những câu hỏi ở đây giống hệt với h (tùy bài) nhưng chỉ đổi tên
1 + 2 + 3 + 4 + ... + n = 171 ( n số hạng )
=> ( 1 + n ) . n : 2 = 171
=> \(n^2+n=342\)
=> \(n^2+n-342=0\)
=> \(\left(n-18\right)\left(n+19\right)=0\)
=> \(\orbr{\begin{cases}n-18=0\\n+19=0\end{cases}\Rightarrow\orbr{\begin{cases}n=18\\n=-19\end{cases}\Rightarrow}n=18}\)
Vậy n = 18
\(A=2.2^2+3.2^3+...+n.2^n\)
\(2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
\(2A-A=\left(2.2^3+3.2^4+...+n.2^{n+1}\right)-\left(2.2^2+3.2^3+...+n.2^n\right)\)
\(A=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)
\(A=-2^2-\left(2^2+2^3+2^4+...+2^n\right)+n.2^{n+1}\)
\(A=-2^2-\left(2^{n+1}-2^2\right)+n.2^{n+1}\)
\(A=\left(n-1\right)2^{n+1}=\left(2n-2\right).2^n\)
Từ đây phương trình ban đầu tương đương với:
\(\left(2n-2\right).2^n=2^{n+34}\)
\(\Leftrightarrow\left(2n-2\right).2^n=2^n.2^{34}\)
\(\Leftrightarrow n-1=2^{33}\)
\(\Leftrightarrow n=2^{33}+1\)
63 . 8n = 258048
8n = 258048 : 63
8n = 4096
8n = 84
=> n = 4
Vậy n = 4