Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ƯC(3n-2; 4n-3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)
\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)
\(\Rightarrow\) \(1\) \(⋮\) \(d\)
\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)
\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)
\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản
1/ Đặt ƯCLN(3n - 2; 4n - 3) = d
=> \(3n-2⋮d\)và \(4n-3⋮d\)
hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)
hay \(12n-8⋮d\)và \(12n-9⋮d\)
\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Leftrightarrow12n-8-12n+9⋮d\)
\(\Leftrightarrow-8+9⋮d\)
Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)
=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau
=> phân số \(\frac{3n-2}{4n-3}\)tối giản.
a)Ta có: n+4 chia hết cho n
Mà n chia hết cho n
=> 4 chia hết cho n
=> n thuộc Ư(4)
=> n thuộc {1;2;4;-1;-2;-4} (nếu bạn chưa học số âm thì bỏ 3 số cuối đi nha)
Vậy n thuộc {1;2;4;-1;-2;-4} (nếu bạn chưa học số âm thì bỏ 3 số cuối đi nha).
b)Ta có: n+5 chia hết cho n+1
=> (n+1) +4 chia hết cho n+1
Mà n+1 chia hết cho n+1
=> 4 chia hết cho n+1
=> n+1 thuộc Ư(4)
=> n+1 thuộc {1;2;4;-1;-2;-4} (nếu bạn chưa học số âm thì bỏ 3 số cuối)
=> n thuộc {0;1;3;-2;-3;-5} (nếu bạn chưa học số âm thì bỏ 3 số cuối)
Vậy n thuộc {0;1;3;-2;-3;-5} (nếu bạn chưa học số âm thì bỏ 3 số cuối)
a) Ta có : 3n + 7 = 3.(n + 3) - 2
Do n + 3 \(⋮\)n + 3
Để 3n + 7 \(⋮\)n + 3 thì 2 \(⋮\)n + 3 => n + 3 \(\in\)Ư(2) = {1; 2}
Với : n + 3 = 1 => n = -2 => n không hợp
n + 3 = 2 => n = -1 => n không thích hợp
Vậy không có giá trị nào của n \(\in\)N
a) n+15 chia hết cho n-3
=> n-3+18 chia hết cho n-3
Vì n-3+18 chia hết cho n-3; n-3 chia hết cho n-3 nên 18 chia hết cho n-3
=> n-3 thuộc Ư(18)
=> n-3 thuộc {1; 2; 3; 6; 9; 18}
Mà n > 5 nên n thuộc {6; 9; 18}
Câu b; c tương tự
a. n+15 chia het cho n-3 (voi n>5)
suy ra :\(\frac{n+15}{n+3}=\frac{n-3+18}{n-3}=1+\frac{18}{n-3}\)chia het cho n-3 thi 18 chia het cho n-3
suy ra n-3 thuoc uoc cua 18={1;2;3;9;18} ma n-3>5 nen n thuoc {6;9;18}
cac cau con lai lam tuong tu
a) Ta có: \(n+15⋮n-3\)
\(\Rightarrow\left(n-3\right)+18⋮n-3\)
\(\Rightarrow18⋮n-3\)(vì \(n-3⋮n-3\))
\(\Rightarrow n-3\inƯ\left(18\right)\)
\(\Rightarrow n-3\in\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow n\in\left\{4;5;6;9;12;21\right\}\)
Do n > 5 nên:
\(\Rightarrow x\in\left\{6;9;12;21\right\}\)
\(n+3⋮n+1\)
\(\Leftrightarrow\)\(n+1+2⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Rightarrow\)\(2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)\)
\(\Rightarrow n+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow n\in\left\{-3;-2;0;1\right\}\)
Vậy \(n\in\left\{-3;-2;0;1\right\}\)