Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do n + 1 là SCP nên khi chia cho 3 chỉ có thể có số dư là 0 hoặc 1
Nếu \(n+1⋮3\)thì \(n\equiv2\left(mod3\right)\)
\(\Rightarrow2n+1\equiv2\left(mod3\right)\)(Vô lý)
Do đó n + 1 chia 3 dư 1
\(\Rightarrow n⋮3\)
Do 2n + 1 là SCP lẻ nên 2n + 1 chia 8 dư 1
\(\Rightarrow2n⋮8\)
\(\Rightarrow n⋮4\)
Vì \(n⋮4\)nên n + 1 chia 8 dư 1
\(\Rightarrow n⋮8\)
Vì \(n⋮8\)và \(n⋮3\)và (3,8) = 1
\(\Rightarrow n⋮24\)
Với n = 24 thi 5n + 1, n + 1, 2n + 1 đề là các SCP
Vậy n = 24
Lớp 6a3 đội tuyển toán dk
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
Để \(\frac{3n+2}{2n-1}\)là số tự nhiên
=> 3n + 2 chia hết cho 2n - 1
=> 6n + 4 chia hết cho 2n - 1
=> 6n - 3 + 7 chia hết cho 2n - 1
=> 3(2n-1) + 7 chia hết cho 2n - 1
=> 7 chia hết cho 2n - 1
=> 2n - 1 \(\in\)Ư(7) = {1;-1;7;-7}
=> n \(\in\){1;0;4;-3}
Thử lại n = 1 thỏa mãn
Vậy n = 1
để n là số tự nhiên thì n phải là ƯC(3,2)
nên n có thể bằng 6,12,18,24...