Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét một thừa số tổng quát:
\(1-\frac{1}{1+2+...+n}=1-\frac{1}{\frac{n(n+1)}{2}}=1-\frac{2}{n(n+1)}\)
\(1-\frac{1}{1+2+...+n}=\frac{n^2+n-2}{n(n+1)}=\frac{(n-1)(n+2)}{n(n+1)}\)
Do đó:
\(P_n=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)....\left(1-\frac{1}{1+2+...+n}\right)\)
\(P_n=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{(n-1)(n+2)}{n(n+1)}\)
\(P_n=\frac{(1.2.3...(n-1))(4.5.6...(n+2))}{(2.3.4...n)(3.4.5..(n+1))}\)
\(P_n=\frac{1}{n}.\frac{n+2}{3}=\frac{n+2}{3n}\Rightarrow \frac{1}{P_n}=\frac{3n}{n+2}\)
Để \(\frac{1}{P_{n}}\in\mathbb{N}\Rightarrow \frac{3n}{n+2}\in\mathbb{N}\)
\(\Leftrightarrow 3n\vdots n+2\)
\(\Leftrightarrow 3(n+2)-6\vdots n+2\)
\(\Leftrightarrow 6\vdots n+2\)
\(\Rightarrow n+2=6\) do \(n+2>3\forall n>1\)
\(\Leftrightarrow n=4\)
Vậy \(n=4\)
Áp dụng : \(\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n-1}}+...+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{2}}+1>2\left(\sqrt{n+1}-\sqrt{n}\right)+2\left(\sqrt{n}-\sqrt{n-1}\right)+...+2\left(\sqrt{4}-\sqrt{3}\right)+2\left(\sqrt{3}-\sqrt{2}\right)+2\left(\sqrt{2}-1\right).\)
\(=2\left(\sqrt{n+1}-1\right).\)
C=\(\dfrac{x-x^3}{x^2+1}\left(\dfrac{1}{1+2x+x^2}+\dfrac{1}{1-x^2}\right)+\dfrac{1}{1+x}\)
\(=\dfrac{x\left(1-x^2\right)}{x^2+1}\left(\dfrac{1}{\left(1+x\right)^2}+\dfrac{1}{\left(1-x\right)\left(1+x\right)}\right)+\dfrac{1}{1+x}\)
\(=\dfrac{x\left(1-x\right)\left(1+x\right)}{x^2+1}\left(\dfrac{1-x+1+x}{\left(1-x\right)\left(1+x\right)^2}\right)+\dfrac{1}{1+x}\)
\(=\dfrac{x\left(1-x\right)\left(1+x\right).2}{\left(x^2+1\right)\left(1-x\right)\left(1+x^2\right)}+\dfrac{1}{1+x}\)
\(=\dfrac{2x}{\left(x^2+1\right)\left(1+x\right)}+\dfrac{1}{1+x}\)
\(=\dfrac{2x+\left(x^2+1\right)}{\left(x^2+1\right)\left(1+x\right)}\)
\(=\dfrac{2x+x^2+1}{\left(x^2+1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+2x+1}{\left(x^2+1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)^2}{\left(x^2+1\right)\left(x +1\right)}\)
\(=\dfrac{x+1}{x^2+1}\)
Bài toán tổng quát: Đề này n lẻ mới đúng nhé
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\)
\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\dfrac{1}{ab}+\dfrac{1}{ac+bc+c^2}\right)=0\)
\(\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{ab\left(ac+bc+c^2\right)}=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Nếu \(a=-b\Rightarrow a^n=-b^n\) và \(\dfrac{1}{a^n}=\dfrac{-1}{b^n}\)
Ta có: \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{c^n}\)
\(\dfrac{1}{a^n+b^n+c^n}=\dfrac{1}{c^n}\)
VT = VP => ĐPCM
Còn ý còn lại thì dựa trên bài này mà biến đổi một tí là ra
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}=\dfrac{637}{2550}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{637}{2550}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{637}{2550}\)
\(\Leftrightarrow\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{637}{1275}\)
\(\Leftrightarrow\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{1}{2}-\dfrac{637}{1275}=\dfrac{1}{2550}\)
\(\Leftrightarrow\left(n+1\right)\left(n+2\right)=2550\)
\(\Leftrightarrow n^2+3n-2548=0\)
\(\Rightarrow n=49\)
@Nguyễn Việt Lâm @Trần Trung Nguyên