\(A=n^2+n+6\) là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

Đặt \(n^2+n+6=m^2\left(m\in N\right)\Rightarrow4n^2+4n+24=4m^2\)

\(\Rightarrow\left(4n^2+1\right)^2+24=4m^2\Leftrightarrow4m^2-\left(4n^2+1\right)^2=24\)

\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=24\)

Xét thấy 2m+2n+1>2m-2n-1>0 và chúng là những số lẻ , nên ta có thể viết 

\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=1.24=2.12=6.4=3.8\)

Suy ra n có thể có giá trị sau:2:

1 tháng 10 2016

Đặt \(n^2+n+6=m^2\left(m\in N\right)\Rightarrow4n^2+4n+24=4m^2\)

\(\Rightarrow\left(2n\right)^2+2.2.n+1+23=4m^2\Leftrightarrow\left(4n^2+1\right)^2+23=4m^2\)

\(4m^2-\left(4n^2+1\right)^2=23\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=23\)

Xét thấy 2m+2n+1>2m-2n-1>0 và chúng là những số lẻ nên ta có thể viết 

\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=1.23\)

Suy ra n có thể có giá trị là 5

30 tháng 7 2016

\(a=n^2\left(n^4-n^2+2n+2\right)\)

A=\(n^2\left(n+1\right)\left(n^3-n^2+2\right)\)

A=\(n^2\left(n+1\right)\left(n^3+1-n^2+1\right)\)

A=\(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

A=\(n^2\left(n+1\right)^2\left(n-1\right)+n^2\left(n+1\right)^2\)

nhận thấy n^2 -2n+2=\(\left(n-1\right)^2+1>\left(n-1\right)^2\)(1) (vì n>1)

vì n>1 => 2n>2

=>2n-2>0

=>\(n^2-\left(2n-2\right)< n^2\)

hay \(n^2-2n+2< n^2\)(2)

từ (1) và (2) =>\(\left(n-1\right)^2< n^2-2n+2< n^2\)

=>\(n^2-2n+2\)không là số chính phương

=> A= \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) không là số chính phương

mình làm tắt chỗ nào không hiểu hỏi mình trả lời cho

16 tháng 9 2017

tk mk nha

16 tháng 9 2017

Đặt A=n2+n+6=k2A=n2+n+6=k2 (kk thuộc NN)

\(\Rightarrow\)4n2+4n+24=4k2→4n2+4n+24=4k2

\(\Rightarrow\)(2n+1)2−4k2=−23→(2n+1)2−4k2=−23

\(\Rightarrow\)(2n+1−4k)(2n+1+4k)=−23→(2n+1−4k)(2n+1+4k)=−23

Đến đây là PT ước số.Tự giải tiếp nhé

23 tháng 9 2019

Đặt \(n^2+2017=a^2\)

\(\Leftrightarrow a^2-n^2=2017\)

\(\Leftrightarrow\left(a+n\right)\left(a-n\right)=2017=1.2017=2017.1\)

Mà \(a+n\ge a-n\left(n\inℕ\right)\)nên \(\hept{\begin{cases}a+n=2017\\a-n=1\end{cases}}\Leftrightarrow n=1008\)

8 tháng 9 2019

a) \(\frac{1}{x}+\frac{1}{y}=2\Leftrightarrow\frac{x+y}{xy}=2\)

\(\Leftrightarrow x+y=2xy\Leftrightarrow4xy=2x+2y\)

\(\Leftrightarrow4xy-2x-2y=0\Leftrightarrow2x\left(2y-1\right)-\left(2y-1\right)=1\)

\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right).\left(-1\right)\)

\(TH1:\hept{\begin{cases}2x-1=1\\2y-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

\(TH1:\hept{\begin{cases}2x-1=-1\\2y-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\left(L\right)\)

Vậy x = y = 1

b) A là số chính phương nên ta đặt \(n^2+2n+8=a^2\)

\(\Leftrightarrow\left(n+1\right)^2+7=a^2\)

\(\Leftrightarrow a^2-\left(n+1\right)^2=7\)

\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=7=1.7=7.1\)

\(=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)

Lập bảng:

\(a-n-1\)\(1\)\(7\)\(-1\)\(-7\)
\(a+n+1\)\(7\)\(1\)\(-7\)\(-1\)
\(a-n\)\(2\)\(8\)\(0\)\(-6\)
\(a+n\)\(6\)\(0\)\(-8\)\(-2\)
\(a\)\(4\)\(4\)\(-4\)\(-4\)
\(n\)\(2\)\(-4\)\(-4\)\(2\)

Mà n là số tự nhiên nên n = 2.

30 tháng 10 2017

\(9n^2+9n-8=(3n)^2+6n+1+3n-9 = (3n+1)^2+(3n-9) để là số chính phương thì 3n-9=0=> n=3 \)