\(3^n+63⋮72\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2020

Sai đề bạn ơi

28 tháng 2 2018

Đặt P = n4 + n3 + n2 + n + 1 

Với n = 1 => A = 3 => loại

Với n \(\ge\)2 ta có: 

(2n2 + n - 1) < 4A \(\le\)(2n2 + n)2 

=> 4A = (2n2 + n)2 

Vậy: n = 2 thỏa mãn đề bài

*P/s: Mik ko chắc*

26 tháng 7 2020

Đáp án sai mà mn

Thay n=2 ta có

\(n^4+n^3+n^2+n+1\)\(=31\): ko là số chính phương

2 tháng 1 2017

n = 4 

k cho minh nha

2 tháng 3 2020

ĐKXĐ : \(n+8\ne0\Rightarrow n\ne-8\)

Để \(\frac{n^2+8}{n+8}\)là số tự nhiên \(\Rightarrow\left(n^2+8\right)⋮\left(n+8\right)\)

n + 8 2 n + 8 n - n + 8 n - n 2

Để \(\left(n^2+8\right)⋮\left(n+8\right)\)\(\Rightarrow n^2-n=0\)

\(\Leftrightarrow n\left(n-1\right)=0\Rightarrow n=0\)hoặc \(n-1=0\Leftrightarrow n=1\)( TM )

Tô Hoài An chỗ đặt tính chia bạn làm chưa đúng. Phải ra thương là (n-8), dư 72.

19 tháng 12 2018

\(n^3-1\)chia hết cho 5 \(\Leftrightarrow\) n có dạng\(5k+1\)

Vậy:

\(\frac{n^3-1}{5}\)

\(=25k^3+15k^2+3k\)

\(=k\left(25k^2+15k+3\right)\)

Vì \(k< 25k^2+15k+3\) nên tích \(k\left(25k^2+15k+3\right)\) là số nguyên tố \(\Leftrightarrow k=1\) , tức \(n=6\)

Thử lại ta thấy: \(\frac{6^3-1}{5}=43\) là số nguyên tố.

27 tháng 2 2020

a) Ta có: \(2018^n-1964^n⋮3\)

\(2032^n-1984^n⋮3\)

nên An chia hết cho 3

Mà \(2018^n-1984^n⋮17\)

\(2032^n-1964^n⋮17\)

nên An chia hết cho 17

Vậy A chia hết cho 51

27 tháng 2 2020

b) Ta có: An đồng dư 3^n +2^n-2.4^n (mod5)

và An đồng dư 2^n + 7^n -2^n-4^n (mod9)

Vậy An chia hết cho 45 khi n có dạng 12k