Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (2n-1)4 : (2n-1) = 27
(2n-1)3 = 27 =33
=> 2n - 1= 3
=> 2n = 4
n = 2
phần b,c làm tương tự nha bn
d) (21+n) : 9 = 95:94
(2n+1) : 9 = 9
2n + 1 = 81
2n = 80
n = 40
a) Vì 3\(⋮\)n
=> n\(\in\)Ư(3)={ 1; 3 }
Vậy, n=1 hoặc n=3
\((11:21)2×(32010−3):3+3=35n+5⇒32010−3+3=35n+5\)
\(⇒32010=35n+5⇒5n+5=2010⇒5n=2005⇒n=401\)
\(2\times\left(3^{2010}-3\right):3+3=3^{5n+5}\)
\(\Rightarrow3^{2010}-3+3=3^{5n+5}\)
\(\Rightarrow3^{2010}=3^{5n+5}\)
\(\Rightarrow5n+5=2010\)
\(\Rightarrow5n=2005\)
\(\Rightarrow n=401\)
a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.
TH1: n+1=1 => n=0 => n+3=3 (t/m)
TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)
=> n=0.
b, A không tối giản => ƯCLN(n+3;n-5) >1
=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.
\(2n+9⋮3n+1\)
\(\Rightarrow3\left(2n+9\right)⋮3n+1\)
\(\Rightarrow2\left(3n+1\right)+25⋮3n+1\)
\(\Rightarrow25⋮3n+1\)
\(\Rightarrow3n+1\in\left\{5,25,1,-5,-25,-1\right\}\)
\(n\in\left\{8,0\right\}\)
\(5n+2⋮9-2n\)
\(\Rightarrow2\left(5n+2\right)⋮9-2n\)
\(\Rightarrow-5\left(9-2n\right)-41⋮9-2n\)
\(41⋮9-2n\)
\(\Rightarrow9-2n\in\left\{41,-41,1,-1\right\}\)
\(\Rightarrow n\in\left\{-16,25,4,-5\right\}\)
\(5n+12⋮n-5\)
=>\(5n-25+37⋮n-5\)
=>\(37⋮n-5\)
=>\(n-5\in\left\{1;-1;37;-37\right\}\)
=>\(n\in\left\{6;4;42;-32\right\}\)
mà n>=0
nên \(n\in\left\{6;4;42\right\}\)
`5n + 12 ⋮ n - 5`
`=> 5n - 25 + 37 ⋮ n - 5`
`=> 5(n - 5) + 37 ⋮ n - 5`
Do `n+5 ⋮ n - 5 `
`=> 5(n+5) ⋮ n - 5`
`=> 37 ⋮ n - 5`
`=> n - 5` thuộc `Ư(37) =` {`-37;-1;1;37`}
`=> n` thuộc {`-32;4;6;42`}
Mà `n` thuộc `N`
`=> n` thuộc {`4;6;42`}
Vậy ...