Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
\(a=n^2\left(n^4-n^2+2n+2\right)\)
A=\(n^2\left(n+1\right)\left(n^3-n^2+2\right)\)
A=\(n^2\left(n+1\right)\left(n^3+1-n^2+1\right)\)
A=\(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
A=\(n^2\left(n+1\right)^2\left(n-1\right)+n^2\left(n+1\right)^2\)
nhận thấy n^2 -2n+2=\(\left(n-1\right)^2+1>\left(n-1\right)^2\)(1) (vì n>1)
vì n>1 => 2n>2
=>2n-2>0
=>\(n^2-\left(2n-2\right)< n^2\)
hay \(n^2-2n+2< n^2\)(2)
từ (1) và (2) =>\(\left(n-1\right)^2< n^2-2n+2< n^2\)
=>\(n^2-2n+2\)không là số chính phương
=> A= \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) không là số chính phương
mình làm tắt chỗ nào không hiểu hỏi mình trả lời cho
chứng minh bài này bằng phản chứng
phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
\(\left(n+1\right)^2n^2\left[\left(n-1\right)^2+1\right]=y^2\)
muốn pt trên đúng thi \(\left(n-1\right)^2+1\)cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
mà với n>1 =>n-1>0=>mâu thuẫn
Phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
(�+1)2�2[(�−1)2+1]=�2(n+1)2n2[(n−1)2+1]=y2
Muốn pt trên đúng thi (�−1)2+1(n−1)2+1cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
Mà với n>1 =>n-1>0=>mâu thuan
Quên cách làm thôi bn .. nếu bn bk thì giải ra đi
Ở đây là chỗ có thể đặt câu hỏi cũng như trả lời mak
b1,
\(n^4< n^4+n^3+n^2+n+1\le n^4+4n^3+6n^2+4n+1=\left(n+1\right)^4\)
=>n4+n3+n2+n+1=(n+1)4<=>n=0
nhầm sai rồi nếu n^4+n^3+n^2+n+1 là scp thì mới chặn đc nhưng ở đây lại ko phải
Ta có : \(n^6-n^4+2n^3+2n^2\)
\(=\left(n^6+2n^3+1\right)-\left(n^4-2n^2+1\right)\)
\(=\left(n^3+1\right)^2-\left(n^2-1\right)^2\)
\(=\left(n^3+1-n^2+1\right)\left(n^3+1+n^2-1\right)\)
\(=n^2\left(n^3-n^2+2\right)\left(n+1\right)\)
\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Ta thấy \(n^2\left(n+1\right)^2\) là số chính phương (1) \(n^2-2n+2=\left(n-1\right)^2+1\)ko phải là số chính phương (2)
Từ (1);(2) => \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) ko phải là số chính phương (đpcm)