K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

a) \(\frac{7n+8}{n}=\frac{7n}{n}+\frac{8}{n}=7+\frac{8}{n}\)

\(\Rightarrow n\in\text{Ư}\left(8\right)=\left\{1;2;4;8\right\}\)

b) \(\frac{35-12n}{n}=\frac{35}{n}-\frac{12n}{n}=\frac{35}{n}-12\)

\(\Rightarrow n\in\text{Ư}\left(35\right)=\left\{1;3;5;7;35\right\}\) 

Loại \(n\in\left\{1;3\right\}\) vì n > 3.

Vậy: \(n\in\left\{5;7;35\right\}\)

c) \(\frac{n+8}{n+3}=\frac{n+3+5}{n+3}=\frac{n+3}{n+3}+\frac{5}{n+3}=1+\frac{5}{n+3}\)

\(\Rightarrow n+3\in\text{Ư}\left(5\right)=\left\{1;5\right\}\)

\(\Rightarrow n+3=1\Rightarrow n=1-3=-2\) (loại vì -2 < 0)

\(\Rightarrow n+3=5\Rightarrow n=2\)

Vậy: n = 2

24 tháng 10 2016

giải đầy đủ ba câu nhưng không yêu cầu chi tiết

a. n phải chia hết cho n rồi cãi sao đuọc

7 n càng chia hết cho n

vậy 8 phải chia hết cho n 

n=(1.2.4.8)

b. ồ n<3 thì còn mỗi 1.2  n=1 hiển nhiên rồi, n=2 ko cần tử biết loại 

vậy n=1 (người ra câu nàylãng xẹt)

c. (n+8)/(n+3) ko có dấu chia hết tạm dùng (...) là dấu chia hết

(n+3) (...) (n+3) hiển nhiên

(n+8) (...) (n+3)

=>[n+8-(n+3)] (...)(n+3)

5(...)(n+3)

vậy n+3=(1,5)

n=(2)

a: \(\Leftrightarrow n\inƯ\left(4\right)\)

hay \(n\in\left\{1;2;4\right\}\)

b: \(\Leftrightarrow n\in\left\{1;2;3;6\right\}\)

mà n<1

nên \(n\in\varnothing\)

c: \(\Leftrightarrow n\inƯ\left(143\right)\)

mà n<12

nên \(n\in\left\{1;11\right\}\)

11 tháng 7 2016

26.gif

13 tháng 7 2016

ucche

 

28 tháng 1 2016

a) x = -4 ; -3 ; -2

b) x = -2 ; -1 ; 0 ; 1

c) không có x nào thỏa mãn trường hợp trên

d) x = -4 ; -3 ; -2 ; -1 ; 0 ; 1 ;2 ; 3

 

27 tháng 9 2018

a, Vì n ⋮ n nên để (n+3) ⋮ n thì 3 ⋮ n. Từ đó suy ra: n ∈ {1;3}

b, Vì 7nn nên để (7n+8)n thì 8n. Từ đó suy ra: n ∈ {1;2;4;8}

c, Vì 12nn nên để (35 - 12n)n thì 35n. Từ đó suy ra: n ∈ {1;5;7;35}

Vì n < 3 nên n = 1

Vậy n = 1

11 tháng 10 2024

(n+3):3

26 tháng 4 2020

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

26 tháng 8 2015

ta có a<b<c=>a<c (1)

ta có 11<a mà c<11 =>c<11<a=>c<a (2)

từ (1)&(2)=> a &c mâu thuẫn với nhau vậy a,b,c không tồn tại để thỏa mãn điều kiện trên

tick đúng cho mình đi mình đã làm dùm bạn mòa