Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
De \(\frac{n+13}{n-2}\)la phan so toi gian thi n + 13 chia het n - 2
Gia su n + 13 chia het n - 2 ta co:
n + 13 \(⋮\)n - 2
=> ( n + 13 - ( n -2 ) \(⋮\)n - 2
=> 15 \(⋮\)n - 2
=> n - 2\(\in\)Ư(15)
=> n - 2\(\in\)( 1 ; 3 ; 5 ; 15 )
Vay n \(\in\)( 3 ; 5 ; 7 ; 17 )
- \(\frac{n+13}{n-2}\)=\(\frac{\left(n-2\right)+15}{n-2}=\)\(1+\frac{15}{n-2}\)\(\Rightarrow\)n-2thuộcƯ(15)=(-15;-5-;-3;-1;1;3;5;15)
n-2 -15 -5 -3 -1 +1 +3 +5 +15 n -13 -3 -1 1 3 5 7 17 Vậy \(\frac{n+13}{n-2}\)là phân số tối giản
Đặt \(d=\left(1-3n,2n-3\right)\).
Suy ra \(\hept{\begin{cases}1-3n⋮d\\2n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2-6n⋮d\\6n-9⋮d\end{cases}}\Rightarrow\left(2-6n\right)+\left(6n-9\right)=-7⋮d\)
\(\Rightarrow\orbr{\begin{cases}d=1\\d=7\end{cases}}\).
Để \(\frac{1-3n}{2n-3}\)là phân số tối giản thì \(d=1\).
\(d\ne7\Rightarrow1-3n\ne7k\Leftrightarrow n\ne\frac{1-7k}{3},\left(k\inℤ\right)\).
Đặt \(A=\frac{n+13}{n-2}\) là phân số tối giản
\(\Rightarrow\)n+13 chia hết cho n-2(n là số tự nhiên)
Ta có:
\(\frac{n+13}{n-2}=\frac{n-2+15}{n-2}=\frac{n-2}{n-2}+\frac{15}{n-2}=1+\frac{15}{n-2}\)
Do đó n-2\(\in\)Ư(15)
Vậy Ư(15)là[1,3,5,15]
Ta có bảng sau:
n-2 | 1 | 3 | 5 | 15 |
n | 3 | 5 | 7 | 17 |
Vậy n=3;5;7;17
1 ) Vì số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó
Để \(\left(n+3\right)\left(n+1\right)\)là nguyên tố
\(\Rightarrow n+1=1,n+3\)là số nguyên tố do \(n+3>n+1\)
\(n=0\Rightarrow\left(n+3\right)\left(n+1\right)=3\)
\(\Rightarrow n=0\)( chọn )
2 ) Tổng 7a5 + 8b4 chia hết cho 9 nên 7 + a + 5 + 8 + b + 4 \(⋮\) 9 , tức là :
24 + a + b \(⋮\) 9 . Suy ra a + b \(\in\){ 3 ; 12 } .
Ta có a + b > 3 ( vì a – b = 6 ) nên a + b = 12 .
Từ a + b = 12 và a – b = 6 , ta có a = ( 12 + 6 ) : 2 = 9
Suy ra b = 3 .
Thử lại : 795 + 834 = 1629 chia hết cho 9 .
Giả sử d là ước nguyên tố của n+13 và n-2
Ta có n+13⋮d
n−2⋮d
=> (n+13)−(n−2)⋮d
=> 15⋮d
=> d∈{3;5}, vì d nguyên tố, ta chỉ cần xét 1 trường hợp là đủ
Để phân số đã cho tối giản thì n+13 không chia hết cho 3
=> n+13≠3k (k∈Z)
=>n≠3k−13
Vây với n≠3k−13 (k∈Z) thì phân số đã cho tối giản