Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{6n-3}{4n-6}=\frac{6n-9+6}{4n-6}=\frac{3\left(2n-3\right)}{2\left(2n-3\right)}+\frac{6}{4n-6}\)
\(M=\frac{3}{2}+\frac{6}{4n-6}\)
Để M lớn nhất , \(\frac{6}{4n-6}\)là số dương lớn nhất => 4n - 6 là số dương nhỏ nhất mà n là số tự nhiên
=> 4n - 6 = 2 => n = 2
Ta có: \(M=\frac{6n-3}{4n-6}=\frac{\frac{3}{2}.\left(4n-6\right)+6}{4n-6}=\frac{\frac{3}{2}.\left(4n-6\right)}{4n-6}+\frac{6}{4n-6}=\frac{3}{2}+\frac{6}{4n-6}\le\frac{3}{2}\)
Dấu "=" xảy ra khi: 6 chia hết cho 4n - 6
<=> \(4n-6\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
4n-6 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 7/4 | 5/4 | 2 | 1 | 9/4 | 3/4 | 3 | 0 |
Vì \(n\in N\) => n = {0;1;2;3}
Vậy Mmax = 3/2 <=> n = {0;1;2;3}
\(M=\frac{6n-3}{4n-6}=\frac{3.\left(2n-2\right)+3}{3.\left(2n-2\right)}=1+\frac{3}{3.\left(2n-2\right)}=1+\frac{1}{2n-2}\)
Để M có GTLN \(\Leftrightarrow\)\(\frac{1}{2n-2}\) có GTLN
\(\Leftrightarrow\)2n-2 là số nguyên dương nhỏ nhất
\(\Leftrightarrow n=2\)
Tìm số tự nhiên n để phân số B=\(\frac{10n-3}{4n-10}\)đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó.
\(2B=\frac{10n-3}{2n-5}=\frac{10n-25+22}{2n-5}=\frac{5\left(2n-5\right)}{2n-5}+\frac{22}{2n-5}\)
=> \(2B=5+\frac{22}{2n-5}\)
Để B đạt giá trị lớn nhất thì 2B phải đạt GTLN
=> \(\frac{22}{2n-5}\)phải đạt GTLN => (2n-5) đạt GTNN => n=0 => 2n-5=-5
GTLN của 2B là: \(2B_{max}=5-\frac{22}{5}=\frac{3}{5}\)
=> \(B_{max}=\frac{3}{10}\) đạt được khi n=0
Để B đạt GTLN thì 2B đạt GTLN
Ta có:
2B=2.10n−34n−10=20n−64n−10=20n−50+444n−10=5.(4n−10)+444n−102B=2.10n−34n−10=20n−64n−10=20n−50+444n−10=5.(4n−10)+444n−10
2B=5.(4n−10)4n−10+444n−10=5+444n−102B=5.(4n−10)4n−10+444n−10=5+444n−10
Để 2B đạt GTLN thì 444n−10444n−10 đạt GTLN
=> 4n - 10 đạt GTNN
+ Với x < 3 thì 4n - 10 < 0, khi đó 444n−10<0444n−10<0
+ Với x≥3x≥3 thì 4n - 10 > 0, khi đó 444n−10444n−10 > 0
Mà n nhỏ nhất => n = 3
Như vậy, ta tìm được n = 3 thỏa mãn 2B đạt GTLN
Thay n = 3 vào B ta có:
B=10.3−34.3−10=30−312−10=272B=10.3−34.3−10=30−312−10=272
Vậy với n = 3 thì B đạt GTNN = 272
ta có:\(B=\frac{10n-3}{4n-10}=\frac{5.\left(2n-5\right)+22}{2.\left(2n-5\right)}=\frac{5}{2}+\frac{22}{2.\left(2n-5\right)}=\frac{5}{2}+\frac{11}{2n-5}\)
\(Bmax\Leftrightarrow\frac{5}{2}+\frac{11}{2n-5}max\Leftrightarrow\frac{11}{2n-5}max\Leftrightarrow2n-5=1\)
\(\Leftrightarrow2n=6\Leftrightarrow n=3\)
\(B=\frac{5}{2}+11=\frac{27}{2}\)
VẬY \(n=3\) THÌ \(maxB=\frac{27}{2}\)
\(B=\frac{10n-3}{4n-10}\)
\(\Leftrightarrow2B=\frac{20n-6}{4n-10}=\frac{20n-50+44}{4n-10}=5+\frac{44}{4n-1}\)
Để 2B Max
=>\(\frac{44}{4n-10}\)max
Có \(\frac{44}{4n-10}=44\)
\(\Rightarrow4n=11\Leftrightarrow n=\frac{11}{4}\)
Vậy Max B = 5 + 44 = 49 <=> n = 11/4
Ta có:
B
=
10
n
−
3
4
n
−
10
=
2
,
5
(
4
n
−
10
)
+
22
4
n
−
10
=
2
,
5
(
4
n
−
10
)
4
n
−
10
+
22
4
n
−
10
=
2
,
5
+
22
4
n
−
10
Vì n là số tự nhiên nên
B
=
2
,
5
+
22
4
n
−
10
đạt giá trị lớn nhất khi
22
4
n
−
10
đạt đạt giá trị lớn nhất.
Mà
22
4
n
−
10
đạt đạt giá trị lớn nhất khi 4n – 10 là số nguyên dương nhỏ nhất.
+) Nếu 4n – 10 = 1 thì 4n = 11 hay
n
=
11
4
(loại)
+) Nếu 4n – 10 = 2 thì 4n = 12 hay n = 3 (chọn)
Khi đó
B
=
2
,
5
+
22
2
=
13
,
5
Vậy B đạt giá trị lớn nhất là 13,5 khi n = 3