\(\frac{8n+143}{4n+3}\)

Có giá trị là số tự nhiên

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2015

a) \(A=\frac{8n+143}{4n+3}=\frac{8n+6+137}{4n+3}=2+\frac{137}{4n+3}\)

Để A là số tự nhiên thì 137 chia hết cho 4n - 3

\(\Rightarrow\) 4n - 3 \(\in\) Ư(137) = {1;137}

\(\Rightarrow\) n \(\in\) {1;35}

b) Để A là phân số tối giản thì 137 không chia hết cho 4n + 3

\(\Rightarrow\) n \(\notin\) {1;35}

26 tháng 2 2017

mình gợi ý nhe để phân số A có giá trị nguyên thì 8n+143 phải chia hết 4n+3

24 tháng 5 2017

a)\(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{n+3}\)

=>n+3 thuộc Ư(187)

n+31-117-17187-187
n-2-414-20184-190
24 tháng 5 2017

mk nhầm

4n+3 thuộc Ư(187)

4n+31-117-17-187187
n-2-13,5 loại-5-47,5 loại46
3 tháng 3 2016

\(\frac{8n+193}{4n+3}=\frac{4n+4n+3+3+187}{4n+3}=\frac{\left(4n+3\right)+\left(4n+3\right)+187}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)

Để \(2+\frac{187}{4n+3}\) là số nguyên <=> \(\frac{187}{4n+3}\) là số nguyên 

=> 4n + 3 ∈ Ư ( 187 )

26 tháng 2 2018

a, \(A=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)

Để A nguyên => \(\frac{187}{4n+3}\inℤ\)

=> \(4n+3\inƯ\left(187\right)\)

Đến đây bạn tự giải tiếp nha.

26 tháng 2 2018

b, Phân số tối giản khi ƯCLN của tử và mẫu là 1. 

=> \(A=2+\frac{187}{4n+3}\) tối giản khi \(\left(4n+3\right)\notinƯ\left(187\right)\).

26 tháng 5 2017

a) \(A=\frac{8n+193}{4n+3}\)

\(A=\frac{8n+6+187}{4n+3}\)

\(A=2+\frac{187}{4n+3}\)

Để A là số tự nhiên thì \(187⋮4n+3\)

\(\Rightarrow4n+3\inƯ\left(187\right)=\left\{\text{±}1;\text{±}11;\text{±}17;\text{±}187\right\}\)

mà A là số tự nhiên

\(4n+3\in\left\{1;11;17;187\right\}\)

Ta có bảng sau:

4n+311117187
4n-2814184
n-0,523,546

Vậy \(n\in\left\{-0,5;2;3,5;46\right\}\)

mà n là số tự nhiên

\(\Rightarrow n\in\left\{2;46\right\}\)

Câu b, c thì chịu. ☺

3 tháng 3 2019

mình giải ở trang này nhé         (http://i5.fapality.com/contents/albums/preview/240x999/1000/1934/preview.jpg)