\(\frac{n+7}{n-2}\)có giá trị nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

Để A= n + 7 /  n - 2 là số nguyên thì n + 7 chia hết cho n - 2

Ta có  : n +7 chia hết cho n - 2

suy ra : n -2 + 9 chia hết cho n - 2

suy ra : 9 chia hết cho n- 2

n - 2 sẽ là ước của 9

suy ra : n = 11 ; -7 ; 3 ; 1 ; 5 ; -1

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
10 tháng 3 2017

để n/n-2 là số nguyên thì n phải chia hết cho n-2=>n chia hêt cho n-2 hay n-2+2 chia hêt cho n-2

mà n-2 chia hết cho n-2 => 2: het cho n-2

=>n-2 thuộc U(2) => n thuộc{1,2,-1,-2}

=>n thuộc {3,5,1,0}

10 tháng 3 2017

Để \(\frac{n}{n-x}\)là số nguyên \(\Leftrightarrow n⋮n-2\)hay \(\left(n-2\right)+2⋮n-2\)

Mà \(\left(n-2\right)⋮\left(n-2\right)\)nên \(2⋮n-2\)\(\Rightarrow\left(n-x\right)\in\)ước của \(2\)

\(\Rightarrow\)Ước của \(2=\left\{2;1;-1;-2\right\}\)

Với \(\left(n-2\right)=2\Rightarrow n=4\)

      \(\left(n-x\right)=1\Rightarrow n=3\)

      \(\left(n-2\right)=-1\Rightarrow n=1\)

      \(\left(n-2\right)=-2\Rightarrow n=0\)

14 tháng 3 2017

M=(6n+4-5):(3n+2)=2-5:(3n+2)

a) để M nguyên thì (3n+2) phải là ước của 5

=> 3n+2={-5; -1; 1; 5}

+/ 3n+2=-5 => n=-7/3 (loại)

+/ 3n+2=-1 => n=-1; M=7

+/ 3n+2=1 => n=-1/3 loại

+/ 3n+2=5 => n=1; M=-3

Đs: n={-1; 1}

b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0

M​​min=2-5/2=-1/2

3 tháng 8 2018

Ta có : \(\frac{5n+7}{n-3}=\frac{5}{3}\)

\(\Leftrightarrow\left(5n+7\right)3=5\left(n-3\right)\)

\(\Leftrightarrow15n+21=5n-15\)

\(\Leftrightarrow15n-5x=-15-21\)

\(\Leftrightarrow10n=-36\)

\(\Leftrightarrow n=-\frac{18}{5}\)

3 tháng 8 2018

\(b,A\inℕ\Rightarrow5n+7⋮n-3\)

\(\Rightarrow5n-15+22⋮n-3\)

\(\Rightarrow5(n-3)+22⋮n-3\)

\(\Rightarrow22⋮n-3\)

\(\Rightarrow n-3\inƯ(22)=[\pm1,\pm2,\pm11,\pm22]\)

bạn tự vẽ bảng

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên