Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A=\(\frac{3x\left(2n+5\right)}{2x\left(3n+1\right)}\)
A=\(\frac{6n+15}{6n+2}\)=\(\frac{\left(6n+2\right)+13}{6n+2}\)=\(\frac{6n+2}{6n+2}\)+\(\frac{13}{6n+2}\)=1+\(\frac{13}{6n+2}\)
Để A là số tự nhiên =>6n+2 chia hết cho 13
=>6n+2 thuộc Ư (13)=(1;13)
6n+2=1=>n thuộc Z (loại)
6n+2=13=> ko tìm đc n
Để A có giá trị là SNT \(\Leftrightarrow2n+5⋮3n+1\)
\(\Leftrightarrow6n+15⋮3n+1\)
\(\Leftrightarrow2.\left(3n+1\right)+13⋮3n+1\)
mà \(\Leftrightarrow2.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow3n+1\inƯ\left(13\right)=\left\{1;13\right\}\)( ước phải là SNT )
\(\Rightarrow n\in\left\{0;4\right\}\)
Để A\(\in\)N \(\Leftrightarrow2n+5\)chia hết cho 3n+1
\(\Leftrightarrow\)6n+15chia hết cho 3n+1
\(\Leftrightarrow\)2(3n+1)+13chia hết cho 3n+1
\(\Leftrightarrow\)13 chia hết cho 3n+1
\(\Leftrightarrow\)3n+1 \(\inƯ\left(13\right)\)
Sau đó bạn tìm ra n vs 3n+1 lần lượt =1;13
Hãy Nhớ Tính xoq thì nhớ thử lại nhé
chúc bn hk giỏi
Ta có : vì \(n\inℕ\)=> \(n+1\inℕ\)
Để \(\frac{3n+1}{n+1}\inℕ\)
=> \(3n+1⋮n+1\)
=> \(3n+3-2⋮n+1\)
=> \(3.\left(n+1\right)-2⋮n+1\)
Ta có : Vì \(3.\left(n+1\right)⋮n+1\)
=> \(-2⋮n+1\)
=> \(n+1\inƯ\left(-2\right)\)
=> \(n+1\in\left\{1;2\right\}\)
Lập bảng xét các trường hợp
Vậy \(\frac{3n+1}{n+1}\inℕ\Leftrightarrow n\in\left\{0;1\right\}\)