Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 bạn dùng chia hết cho 13
Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8
Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1
Khi đó ta có x^2+3x-4=(x-1)(x+4)
đến đây thì dễ rồi
Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra
Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2
Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra
Câu hỏi của Nguyễn Thị Hồng Linh - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo link này nhé!
Với n là số tự nhiên
Ta có: \(5^{2n^2-6n+2}-12=25^{n^2-3n+1}-12=25^{n^2-3n}.25-12\)
Với \(n^2-3n=n\left(n-3\right)⋮2\)( vì n, n-3 1 trong 2 số sẽ có sỗ chẵn, hoặc chia trường hợp n chẵn và n lẻ để chứng minh nó chia hết cho 2)
Đặt: \(n^2-3n=2k\)
=> \(5^{2n^2-6n+2}-12=25^{2k}.25-12\equiv\left(-1\right)^{2k}.25-12\equiv25-12\equiv0\left(mod13\right)\)
Mà \(5^{2n^2-6n+2}-12\)là số nguyên tố
=> \(5^{2n^2-6n+2}-12=13\Leftrightarrow5^{2n^2-6n+2}=25=5^2\Leftrightarrow2n^2-6n+2=2\)
\(\Leftrightarrow\orbr{\begin{cases}n=0\\n=3\end{cases}}\) thử lại thỏa mãn
Vậy n=0 hoặc n=3
\(p=\left(n-1\right)^2\left[\left(n-1\right)^2+1\right]+1\)
\(\left(n-1\right)^4+2.\left(n-1\right)^2+1-\left(n-1\right)^2\)
\(\left[\left(n-1\right)^2+1\right]^2-\left(n-1\right)^2\)
\(\left[\left(n-1\right)^2+1-\left(n-1\right)\right]\left[\left(n-1\right)^2+1+\left(n-1\right)\right]\)
\(\left[n^2-3n+3\right]\left[n^2-n+1\right]\)
can
\(\orbr{\begin{cases}n^2-3n+3=1\Rightarrow n=\orbr{\begin{cases}n=2\\n=1\end{cases}}\\n^2-n+1=1\Rightarrow n=\orbr{\begin{cases}n=0\\n=1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}n^2-3n+3=1\\n^2-n+1=1\end{cases}}\)
n=(0,1,2)
du
n=2
ds: n=2
n\(^3\) -n\(^2\) -7n +10
=n\(^3\) -2n\(^2\) +n\(^2\) -2n-5n+10
=(n-2)(n\(^2\) +n-5) (bạn nhóm lại rồi rút nhân tử chung nha)
Vì P nguyên tố nên
=> n-2=1 =>n=3 (nhận)
=>n\(^2\) +n-5=1 => n=2 (nhận) hoặc n=-3(loại)
ta có: n=3 =>P=7(nhận) (bạn thế n vào biểu thức P rồi tính ra)
n=2 => P=0(loại)
vậy n cần tìm là n=3
\(B=n^5+n^4+1=\left(n^2+n+1\right)\left(n^3-n+1\right)\)
Xét \(n>2\)thì không thỏa mãn vì là tích của 2 số khác 1.
Xét n = 0 hoặc n = 1 hoặc n = 2 là xong
Ta có:
\(5^{2n^2-6n+2}-12=25^{n^2-3n+1}-12\equiv-1+1\equiv0\left(mod13\right)\)
\(\Rightarrow25^{n^2-3n+1}-12=13\)
\(\Leftrightarrow n^2-3n+1=1\)
\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=3\end{matrix}\right.\)