Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì: n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố. Suy ra: n phải là số chẵn (2 là số nguyên tố chẵn duy nhất)
Nếu n = 2 thì n + 13 = 15 là hợp số (loại)
Nếu n = 4 thì n + 1 = 5; n + 3 = 7; n + 9 = 11; n + 13 = 17; n + 15 = 19 đều là các số nguyên tố (nhận)
Vậy: Số tự nhiên nhỏ nhất để n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố là: n = 4
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
b) -Nếu p=3 => p+2 = 5 là số nguyên tố
p+ 4=7 là số nguyên tố
=> p= 3 (chọn)
-Nếu p > 3 mà p là số nguyên tố
=> p = 3k+1 hoặc p= 3k+2
+) Nếu p= 3k+1=> p+2= 3k+1 +2 = 3k+3
=3(k+1) chia hết cho 3( là hợp số)
=> p=3k+1 (loại)
+) Nếu p= 3k+2=> p+4=3k+2 +4 =3k+6
=3(k+2) chia hết cho 3(là hợp số)
=> p=3k+2 (loại)
Vậy p= 3