\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 2 2022

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{2}{n\left(n+1\right)}\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{n\left(n+1\right)}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{n\left(n+1\right)}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{2010}{2011}\)

\(\Leftrightarrow n=4021\).

8 tháng 1 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{n\left(n+1\right)}\)

\(=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{n\left(n+1\right)}=1-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+...+\frac{2}{n}-\frac{2}{n+1}\)

Tới đây dễ rồi bạn rút gọn rồi tìm n

tung từng vế một thôi

bạn nhác quá éo chịu suy nghĩ

bài này dễ vl

13 tháng 5 2017

Bài 1:

a, \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2010}{2011}\)

\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)

\(1-\frac{1}{5x+6}=\frac{2010}{2011}\)

\(\frac{1}{5x+6}=1-\frac{2010}{2011}\)

\(\frac{1}{5x+6}=\frac{1}{2011}\)

=> 5x + 6 = 2011

    5x = 2011 - 6

    5x = 2005

    x = 2005 : 5

    x = 401

b, \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)

\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)

\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)

\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)

\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)

\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)

\(\frac{7}{x}=\frac{7}{15}\)

=> x = 15

c, ghi lại đề

d, ghi lại đề

Bài 2:

\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)

20 tháng 6 2017

Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+......+\frac{2}{n\left(n+1\right)}\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.....+\frac{2}{n\left(n+1\right)}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{n\left(n+1\right)}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+......+\frac{1}{n\left(n+1\right)}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{n+1}\right)\)

\(=1-\frac{2}{n+1}\)

\(=\frac{n+1}{n+1}-\frac{2}{n+1}\)

\(=\frac{n-1}{n+1}\)

20 tháng 6 2017

bài 2 x đâu vậy bn

đặt a=1/3+1/6+1/10+...........+2/n(n+1)

1/2a=1/6+1/12+...........+1/n(n+1)

1/2a=1/2.3+1/3.4+........+1/n(n+1)

1/2a=1/2-1/3+1/3-1/4+.......+1/n-1/n+1

1/2a=1/2-1/n+1

a=(1/2--1/n+1):1/2=2003/2004

1/2-1/n+1=2003/2004.1/2

1/2-1/n+1=2003/4008

1/n+1=1/2-2003/4008

1/n+1=1/4008

suy ra n+1=4008

n=4007

17 tháng 3 2017

n=4007 do

11 tháng 12 2016

\(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{2003}{2004}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)\(\Rightarrow\frac{1}{n+1}=\frac{1}{4008}\)\(n+1=4008\Rightarrow n=4007\)

 

 

11 tháng 12 2016

cảm ơn

6 tháng 5 2019

Bạn tham khảo câu trả lời tương tự ở đây nhé:

Câu hỏi của Nguyễn Hải - Toán lớp 7 - Học toán với OnlineMath

6 tháng 5 2019

\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+...+\(\frac{2}{n\left(n+1\right)}\)=\(\frac{2017}{2019}\)

\(\frac{2}{6}\)+\(\frac{2}{12}\)+\(\frac{2}{20}\)+...+\(\frac{2}{n\left(n+1\right)}\)=\(\frac{2017}{2019}\)

2\(\times\)\((\)\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+...+\(\frac{1}{n.\left(n+1\right)}\)\()\)=\(\frac{2017}{2019}\)

2\(\times\)\((\)\(\frac{1}{2}\)_\(\frac{1}{3}\)+\(\frac{1}{3}\)_\(\frac{1}{4}\)+\(\frac{1}{4}\)_\(\frac{1}{5}\)+...+\(\frac{1}{n}\)_\(\frac{1}{n+1}\)\()\)=\(\frac{2017}{2019}\)

2\(\times\)\((\)\(\frac{1}{2}\)_\(\frac{1}{n+1}\)\()\)=\(\frac{2017}{2019}\)

\(\frac{1}{2}\)_\(\frac{1}{n+1}\)=\(\frac{2017}{4038}\)

\(\frac{1}{n+1}\)=\(\frac{1}{2}\)_\(\frac{2017}{4038}\)

\(\frac{1}{n+1}\)=\(\frac{1}{2019}\)

\(\Rightarrow\)n+1=2019

\(\Rightarrow\)n=2018\(\in\)Z

Vậy n=2018

28 tháng 3 2018

viết cả cách làm nhé!

Bài 1:

a. https://olm.vn/hoi-dap/detail/100987610050.html

b. Giống nhau hoàn toàn => P=Q

Chỉ biết thế thôi