K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

a] n+4 là bội của n+1

=> n + 4 chia hết cho n + 1

=> (n + 1) + 3 chia hết cho n + 1

=> 3 chia hết cho n + 1

=> n + 1 thuộc Ư(3) = {-1;1;-3;3}

Ta có: 

n + 1-3-113
n-4-202
14 tháng 2 2018

I love the app and the fact it has a new iPad version right about now bye con cho di Lon

8 tháng 11 2021

You what

1 tháng 2 2017

a) Ta có : n-4=n-(1+3)=n-1-3

Mà n-1 chia hết cho n-1=} Để n-1-3 chia hết cho n-1 thì 3 chia hết cho n-1

=} n-1€Ư(3)={1;3}

=}n€{2;4}

b) Ta có : 2n=2n-4+4=2(n-2)+4

Mà 2(n-2) chia hết cho n-2 =} Để 2(n-2)+4 chia hết cho n-2 thì 4 chia hết cho n-2

=} n-2€Ư(4)={1;2;4}

=} n€{3;4;6}

c) Mik chưa làm được, mong bn thông cảm

Nhớ và kb vs mik nha

8 tháng 1 2016

Nếu tôi ngu thì cậu thử làm đi?Cả cách làm cụ thể nhé!

8 tháng 1 2016

Please!Mai nộp rồi.lại còn văn chưa làm......

5 tháng 6 2015

a/ nếu là tìm x thuộc Z thi giải như sau

n+5 chia hết cho n-2

mà n-2 chia hết cho n-2

=> [n+5] - [n-2] chia hết cho n-2

=> 7 chia hết cho n-2

Ta có bảng :

n-2-1-717
n1-539

Vậy .......... 

b/

2n+1 chia hết cho n-5

n-5 chia hết cho n-5

=> 2.[n-5] chia hết cho n-5 => 2n -10 chia hết cho n-5

=> [2n+1] -[2n-10] chia hết cho n-5

=> 11 chia hết cho n-5

lập bảng t.tự câu a

c/ bạn xem lại đề

 

1 tháng 2 2016

5 bài lận luôn hả? Haiz...

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do

21 tháng 7 2015

dễ nhưng ngại làm vừa viết văn xong đang mỏi cả tay đi nè