K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

bài 2) 

theo đề ta có : \(\frac{2x+5}{x+2}=2+\frac{1}{x+2}\)

để 2x+5 chia hết x+2 thì :x+2 là Ư(1)={1;-1}

Xét TH:

x+2=1=>x=-1(loại)

x+2=-1=> x=-3 (loại)

vậy k có giá trị x nào là só tự nhiên để thỏa đề bài

 

30 tháng 7 2016

trả lời dễ hiểu nhé các bạn 

a: \(-3xy^2+x^2y^2-5x^2y\)

\(=xy\left(-3y+xy-5x\right)\)

c: \(y^2+xy+y=y\left(y+x+1\right)\)

 

14 tháng 8 2020

Đề bài : Chứng minh rằng tổng lập phương của các số tự nhiên liên tiếp từ 1 đến n bằng bình phương của tổng từ 1 đến n ( n tự nhiên ). Hay ta cần chứng minh : \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) (*)

Lời giải : 

+) Xét \(n=1\) thì ta có : \(1^3=1^2\) ( đúng ) 

Suy ra (*) đúng với \(n=1\) (1)

+) Xét \(n=2\) ta có : \(1^3+2^3=1+8=9\)\(\left(1+2\right)^2=3^2=9\)

\(\Rightarrow1^3+2^3=\left(1+2\right)^2\) ( đúng ). Nên (*) đúng với \(n=2\) (2)

+) Giả sử (*) đúng với \(n=k\). Tức là : \(1^3+2^3+3^3+....+k^3=\left(1+2+...+k\right)^2\).

Ta cần chứng minh \(n=k+1\) cũng đúng với (*). Thật vậy , ta có :

\(1^3+2^3+3^3+.....+\left(k+1\right)^3\)

\(=1^3+2^3+....+k^3+\left(k+1\right)^3\)

\(=\left(1+2+3+....+k\right)^2+\left(k+1\right)^3\)

Xét biểu thức \(\left(k+1\right)^2+2.\left(k+1\right).\left(1+2+3+....+k\right)\)

\(=\left(k+1\right)^2+2.\left(k+1\right)\cdot\frac{\left(k+1\right).k}{2}\)

\(=\left(k+1\right)^2+\left(k+1\right)^2.k=\left(k+1\right)^3\)

Do đó \(1^3+2^3+....+\left(k+1\right)^3\)

\(=\left(1+2+3+....+k\right)^2+2.\left(k+1\right)\left(1+2+....+k\right)+\left(k+1\right)^2\)

\(=\left(1+2+3+....+k+k+1\right)^2\)

Vậy (*) đúng với \(n=k+1\) (3)

Từ (1) (2) và (3) suy ra \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) với mọi \(n\in N\).

a: \(=2^6\cdot2^{20}=2^{26}\)

b: \(=3^9\cdot3^8\cdot3^2\cdot2\cdot13=3^{19}\cdot2\cdot13\)

5 tháng 11 2019

1 tấn +100km3+1km2+1000m=

giúp mình với help me

5 tháng 11 2019

ko cùng đơn vị sao tính nhỉ gunny

(x+3)(y-5)=-15

=>\(\left(x+3;y-5\right)\in\left\{\left(1;-15\right);\left(-15;1\right);\left(-1;15\right);\left(15;-1\right);\left(3;-5\right);\left(-5;3\right);\left(-3;5\right);\left(5;-3\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(-2;-10\right);\left(-18;6\right);\left(-4;20\right);\left(12;4\right);\left(0;0\right);\left(-8;8\right);\left(-6;10\right);\left(2;2\right)\right\}\)