Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{16}{2^x}=2\)
\(\Rightarrow2^{x+1}=16\)
\(\Rightarrow2^{x+1}=2^4\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=3\)
b)
\(\frac{\left(-3\right)^x}{81}=-27\)
\(\Rightarrow\left(-3\right)^x=-\left(3^3.3^4\right)\)
\(\Rightarrow-3^x=-3^7\)
=> x=7
c)
\(8^n:2^n=4\)
\(\Rightarrow2^{3n}:2^n=4\)
\(\Rightarrow2^{3n-n}=4\)
\(\Rightarrow2^{2n}=2^2\)
=>2n=2
=>n=1
a)\(\frac{16}{2^n}=2\)
=>16:2n=2
=>2n=16:2
=>2n=8
b)ko nhớ cách làm
c)8n:2n=4
=>(23)n:2n=22
=>23n:2n=22
=>23n-n=22
=>22n=22
=>2n=2
=>n=1
dc rùi chứ
\(a;\frac{16}{2^n}=2\Leftrightarrow\frac{16}{2^n}=\frac{16}{2^3}\Rightarrow n=3\)
\(b;\frac{\left(-3\right)^n}{81}=-27\Leftrightarrow\frac{\left(-3\right)^n}{81}=\frac{\left(-3\right)^7}{81}\Rightarrow n=7\)
\(c;8^n:2^n=4\Leftrightarrow2^{3n}:2^n=2^2\Leftrightarrow2^{2n}=2^2\Rightarrow2n=2\Leftrightarrow n=1\)
a) \(\frac{16}{2^n}\)= \(2\)=> \(\frac{16}{2^n}\)= \(\frac{16}{8}\)=> 2n = 8 => 2n = 23 => n = 3.
b) Ta có : (-3)n = - 27 . 81
=> (-3)n = - 2187
=> (-3)n = (-3)7
=> n = 7
c) 8n : 2n = 4
=> 4n = 4
=> n = 1.
Bạn tk cho mik nha
a) \(\dfrac{12}{\left(-2\right)^n}=\dfrac{-12}{8}\)
\(\Rightarrow12.8=\left(-2\right)^n.\left(-12\right)\)
\(\Rightarrow96=\left(-2\right)^n.\left(-12\right)\)
\(\Rightarrow\left(-2\right)^n=\dfrac{96}{-12}\)
\(\Rightarrow\left(-2\right)^n=-8\)
\(\Rightarrow\left(-2\right)^n=\left(-2\right)^3\)
\(\Rightarrow n=3\)
Vậy \(n=3\)
2)
a) \(\dfrac{4}{9}\) và \(\dfrac{5}{8}\) Mẫu chung: 72
\(\dfrac{4}{9}=\dfrac{4.8}{72}=\dfrac{32}{72}\)
\(\dfrac{5}{8}=\dfrac{5.9}{72}=\dfrac{45}{72}\)
Vì \(\dfrac{32}{72}< \dfrac{45}{72}\)
Vậy \(\dfrac{4}{9}< \dfrac{5}{8}\)
b) \(-\sqrt{\dfrac{4}{9}}\) và \(\dfrac{-3}{4}\) MTC: 12
\(-\sqrt{\dfrac{4}{9}}=-\sqrt{\left(\dfrac{2}{3}\right)^2}=-\dfrac{2}{3}=\dfrac{-2.4}{12}=\dfrac{-8}{12}\)
\(-\dfrac{3}{4}=\dfrac{-3.3}{12}=\dfrac{-9}{12}\)
Vì \(\dfrac{-8}{12}>\dfrac{-9}{12}\)
Vậy \(-\sqrt{\dfrac{4}{9}}>\dfrac{-3}{4}\)
a) 162n=2 => \(\dfrac{2^4}{2^n}=2\Rightarrow2^{4-n}=2\Rightarrow4-n=1\Rightarrow n=3\)
b,
\(\dfrac{\left(-3\right)^n}{81}=-27\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^4}=-27\Rightarrow\left(-3\right)^{n-4}=\left(-3\right)^3\Rightarrow n-4=3\Rightarrow n=7\)
c,\(8^n:2^n=4\Rightarrow4^n=4\Rightarrow n=1\)
=> (-3)n-4 = (-3)3
=> n - 4 = 3 => n = 7
c) 8n : 2n = 4
4n = 4.
\(\dfrac{72-x}{7}=\dfrac{x-4}{9}\)
\(\Rightarrow9\left(72-x\right)=7\left(x-4\right)\)
\(\Rightarrow648-9x=2x-28\)
\(\Rightarrow11x-28=648\)
\(\Rightarrow11x=676\Rightarrow x=\dfrac{676}{11}\)
\(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
\(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)
\(\Rightarrow259-7x=3x+39\)
\(\Rightarrow10x+39=259\)
\(\Rightarrow10x=220\Rightarrow x=22\)
\(\dfrac{x+4}{20}=\dfrac{5}{x+4}\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow\left(x+4\right)^2=\pm10^2\)
\(\Rightarrow\left[{}\begin{matrix}x+4=10\Rightarrow x=6\\x+4=-10\Rightarrow x=-14\end{matrix}\right.\)
\(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x-2\right)\left(x+2\right)\)
\(\Rightarrow x\left(x+3\right)-1\left(x+3\right)=x\left(x+2\right)-2\left(x+2\right)\)
\(\Rightarrow x^2+3x-x-3=x^2+2x-2x-4\)
\(\Rightarrow x^2+2x-3=x^2-4\)
\(\Rightarrow2x-3=-4\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\dfrac{1}{2}\)
Bài 1:
a) Ta có:
\(\frac{x}{3}=\frac{y}{7}\) và \(x.y=84.\)
Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=7k\end{matrix}\right.\)
Lại có: \(x.y=84\)
\(\Rightarrow3k.7k=84\)
\(\Rightarrow21.k^2=84\)
\(\Rightarrow k^2=84:21\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2.\)
+ TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=7.2=14\end{matrix}\right.\)
+ TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=7.\left(-2\right)=-14\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;14\right),\left(-6;-14\right).\)
Bài 2:
a) Ta có:
Tham khảo nha:
Biến đổi biểu thức tương đương : (x^2 - 1) /2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : {1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; =>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Chúc bạn học có hiệu quả!
Bài 1:
\(\frac{1}{8}.16^n=2^n\)
\(\Rightarrow\frac{16^n}{8}=2^n\)
\(\Rightarrow\frac{\left(2^4\right)^n}{2^3}=2^n\)
\(\Rightarrow\frac{2^{4n}}{2^3}=2^n\)
\(\Rightarrow2^{4n-3}=2^n\)
\(\Rightarrow4n-3=n\)
\(\Rightarrow4n-n=3\)
\(\Rightarrow3n=3\)
\(\Rightarrow n=3:3\)
\(\Rightarrow n=1\left(TM\right).\)
Vậy \(n=1.\)
Bài 3:
a) \(\left|2x+3\right|=x+2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-x=2-3\\2x+x=-2-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}1x=-1\\3x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\left(-1\right):1\\x=\left(-5\right):3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{5}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{-1;-\frac{5}{3}\right\}.\)
Chúc bạn học tốt!
Bài 3:
b) \(A=\left|x-2006\right|+\left|2007-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|\)
\(\Rightarrow A\ge\left|1\right|\)
\(\Rightarrow A\ge1.\)
Dấu '' = '' xảy ra khi:
\(\left(x-2006\right).\left(2007-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2006\ge0\\2007-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2006\le0\\2007-x\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2006\\x\le2007\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2006\\x\ge2007\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2006\le x\le2007\\x\in\varnothing\end{matrix}\right.\)
Vậy \(MIN_A=1\) khi \(2006\le x\le2007.\)
Chúc bạn học tốt!
Câu 1:
a: |x-1|+|x-5|=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
b: Đặt \(\dfrac{x}{3}=\dfrac{y}{2}=k\)
=>x=3k; y=2k
\(x^2+y^2=52\)
\(\Rightarrow9k^2+4k^2=52\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
=>x=6; y=4
Trường hợp 2: k=-2
=>x=-6; y=-4
c: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{2a-b}=\dfrac{bk}{2bk-b}=\dfrac{k}{2k-1}\)
\(\dfrac{c}{2c-d}=\dfrac{dk}{2dk-d}=\dfrac{k}{2k-1}\)
Do đó: \(\dfrac{a}{2a-b}=\dfrac{c}{2c-d}\)
A bạn ơi cho mình sửa đề một tí câu a phải là \(\dfrac{16}{2^n}=2\)
a) \(\dfrac{16}{2^n}=2\Rightarrow\dfrac{2^4}{2^n}=2\Rightarrow2^{4-n}=2\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{81}=-27\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^4}=\left(-3\right)^3\)
\(\Rightarrow\) \(\left(-3\right)^{n-4}=\left(-3\right)^3\)
\(\Rightarrow n-4=3\Rightarrow n=7\)
c) \(8^n:2^n=4=gt\Rightarrow\left(8:2\right)^n=4=gt\Rightarrow4^n=4=gt\Rightarrow n=1\)
Hok tốt nha!
a) \(\dfrac{16}{2^n}=2\)
\(\Rightarrow\)\(\dfrac{2^4}{2^n}=2\)
\(\Rightarrow\) 2. 2n = 24
2n + 1 = 24
n + 1 = 4
n = 4 - 1
n = 3
b) \(\dfrac{\left(-3\right)^n}{81}=\left(-27\right)\)
\(\Rightarrow\)\(\dfrac{\left(-3\right)^n}{\left(-3\right)^4}=\left(-3\right)^3\)
\(\Rightarrow\) (-3)n = (-3)4 . (-3)3
(-3)n = (-3)7
n = 7
c) 8n : 2n = 4
\(\Rightarrow\)(8 : 2)n = 4
4n = 4
n = 1.