Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk cũng đang cần bài này các bn giúp mk và Trịnh Lan Phương với nha
(3n+13 ) / (n+1)
= [3(n+1) + 10] / (n+1)
=3 + 10/(n+1)
Để chia hết thì n+1 là ước của 10
n+1= 10=>n=9(nhận)
n+1=-10 =>n=-11(loại)
n+1=5=>n=4(nhận)
n+1=-5=>n=-6(loại)
n+1=2=>n=1(nhận)
n+1=-2=>n=-3(loại)
n+1=1=>n=0(nhận)
n+1=-1=>n=-2(loại)
Vậy n=0,1,4,9 thì 3n+13 chia hết cho n+1
Ta có 3n+13=3n+3 + 10 = 3(n+1) + 10
Vì 3(n+1) chia hết cho n+1 với mọi n nên để 3n+13 chia hết cho n+1 <=> 10 phải chia hết cho n+1
Hay n+1 thuộc Ư(10) = (1, 2 ,5, 10)!
Thay lần lượt ta đc: n+1=1 <=> n=0
n+1=2 <=> n = 1
n+1 = 5 <=> n = 4
n+1 = 10 <=> n = 9
1. Vì 18 chia hết cho n => n thuộc Ư(18)={1,2,3,6,9,18)
=> Tổng các Ư(18) = 1 + 2 +3 + 6 + 9 + 18 = 33
2.a) 12 chia hết cho n+3 => n + 3 thuộc Ư(12) = {1;2;3;4;6;12}
Với n + 3 = 1 => n = 1 - 3 = -2 (loại vì không thuộc N)
Với n + 3 = 2 => n = 2 - 3 = -1 (loại vì không thuộc N)
Với n + 3 = 3 => n = 3 - 3 = 0
Với n + 3 = 4 => n = 4 - 3 = 1
Với n + 3 = 6 => n = 6 - 3 = 3
Với n + 3 =12 => n = 12 - 3 = 9
Vậy n thuộc {0;1;3;9}
c) Nếu n là số chẵn thì n + 13 là số lẻ, n + 2 là số chắn và ngược lại
Vì SC không chia hết cho SL (và ngược lại) => n + 13 không chia hết cho n + 2 (ngược lại nốt)
Vậy không tồn tại giá trị nào của x (chắc thế)
Bài 1 :
\(18⋮n\Rightarrow n\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
bài 2 :
\(a,12⋮n+3\)
\(\Rightarrow n+3\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
\(\Rightarrow n=\left\{-2;-1;0;1;3;9\right\}\)mà \(n\in N\)
\(\Rightarrow n=\left\{0;1;3;9\right\}\)
b,c tương tự như vậy nha
13n chia hết cho n-1
=>13(n-1)+13 chia hết cho n-1
=>n-1 thuộc U(13)
=>n-1 thuộc {1;13}
=>n thuộc {0;12}