Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(2x^2+4x^3-7=4x^2(x-3)+14x(x-3)+42(x-3)+119\)
\(=(x-3)(4x^2+14x+42)+119\)
Do đó phép chia $2x^2+4x^3-7$ cho $x-3$ có thương là $4x^2+14x+42$ và dư là $119$
Bài 2:
Theo định lý Bê-du về phép chia đa thức thì phép chia đa thức $f(x)$ cho $x-a$ có dư là $f(a)$
Áp dụng vào bài toán:
\(f(2)=-23\)
\(\Leftrightarrow 2^3-4.2^2+5.2+a=-23\)
\(\Leftrightarrow 2+a=-23\Rightarrow a=-25\)
Bài 3:
Ta có:
\(x^3+ax+b=x(x^2+2x+1)-2x^2-x+ax+b\)
\(=x(x^2+2x+1)-2(x^2+2x+1)+3x+2+ax+b\)
\(=(x-2)(x+1)^2+x(a+3)+(b+2)\)
Vậy $x^3+ax+b$ khi chia $(x+1)^2$ có dư là $x(a+3)+(b+2)$
\(\Rightarrow \left\{\begin{matrix} a+3=2\\ b+2=1\end{matrix}\right.\Rightarrow a=-1; b=-1\)
Bài 4:
\(x^2+y^2-4y+5=0\)
\(\Leftrightarrow x^2+(y^2-4y+4)+1=0\)
\(\Leftrightarrow x^2+(y-2)^2+1=0\)
\(\Rightarrow x^2+(y-2)^2=-1\)
Rõ ràng vế trái luôn không âm, mà vế phải âm nên vô lý
Vậy pt vô nghiệm, không tồn tại $x,y$ thỏa mãn.
Bài 1. Ba số tự nhiên liên tiếp là \(a,a+1,a+2,\) với \(a\ge0\). Tích của 2 trong 3 số ấy là các số \(a\left(a+1\right),\left(a+1\right)\left(a+2\right),a\left(a+2\right).\) Theo giả thiết \(a\left(a+1\right)+\left(a+1\right)\left(a+2\right)+a\left(a+2\right)=242\to\left(a+1\right)\left(2a+2\right)+a^2+2a+1=243\)
suy ra \(\to2\left(a+1\right)^2+\left(a+1\right)^2=243\to3\left(a+1\right)^2=243\to\left(a+1\right)^2=81\to a+1=9\to a=8.\)
Bài 2.
a) CHẮC BẠN GÕ NHẦM ĐỀ BÀI. Đề chính xác là
\(\left(2^9+2^7+1\right)\left(2^{23}-2^{21}+2^{19}-2^{17}+2^{14}-2^{10}+2^9-2^7+1\right)\)
Đáp số là \(2^{2^5}+1=2^{32}+1\). Sở dĩ tôi chắc chắn như vậy, vì đây là phân tích nhân tử của số Fermat thứ 5.
b) Như trên ta biết rằng \(2^{32}+1=\left(2^9+2^7+1\right)\left(2^{23}-2^{21}+2^{19}-2^{17}+2^{14}-2^{10}+2^9-2^7+1\right)\) nên không phải là số nguyên tố.
Bài 1
ta có a+3+b-3 =a +b chia hết cho 4
nên (b-a )(a+b) cũng chia hết cho 4
bài 2.
ta có: \(M=6x^2-5x-6-12xy+6y^2+6y-3x+2y+2027\)
\(=6\left(x-y\right)^2-8\left(x-y\right)+2021=24-16+2021=2029\)
Câu 1 thì mình biết làm đó.
Vì 2013 chia 7 dư 4 nên 20132012 chia 7 cũng dư 4