\(\overline{a_1a_2a_3b_1b_2b_3}a_1a_2a_3\), ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 4 2020

Nếu $p_1,p_2,p_3,p_4$ là 4 số nguyên tố khác nhau thì loại TH $\overline{a_1a_2a_3}=121; 169$.

AH
Akai Haruma
Giáo viên
29 tháng 4 2020

Lời giải:

Theo đề bài ta có:
\(A=\overline{a_1a_2a_3}.10^6+\overline{b_1b_2b_3}.10^3+\overline{a_1a_2a_3}=\overline{a_1a_2a_3}.10^6+2.\overline{a_1a_2a_3}.10^3+\overline{a_1a_2a_3}\)

\(=\overline{a_1a_2a_3}(10^6+2.10^3+1)=\overline{a_1a_2a_3}(10^3+1)^2\)

\(=\overline{a_1a_2a_3}[(10+1)(10^2-10+1)]^2=\overline{a_1a_2a_3}.11^2.91^2=\overline{a_1a_2a_3}.11^2.7^2.13^2\)

Theo dạng của $A$ ta thấy $\overline{a_1a_2a_3}$ là bình phương của 1 số nguyên tố.

Đặt $\overline{a_1a_2a_3}=p^2$. Dễ thấy $a_1<5$ vì nếu $a_1\geq 5$ thì $\overline{b_1b_2b_3}=2\overline{a_1a_2a_3}\geq 1000$ (vô lý). Khi đó:

$100\leq \overline{a_1a_2a_3}=p^2\leq 499$

$\Rightarrow 10\leq p\leq 22$. Mà $p$ nguyên tố nên $p=11; 13;17;19$

Khi đó thay vào tìm được $\overline{a_1a_2a_3}=121; 169; 289; 361$

$\Rightarrow \overline{b_1b_2b_3}=242; 338; 578; 722$ (tương ứng)

Khi đó bạn ghép lại để viết ra số A thôi.

AH
Akai Haruma
Giáo viên
29 tháng 4 2020

Tham khảo lời giải tại đây:

Câu hỏi của Đõ Phương Thảo - Toán lớp 8 | Học trực tuyến

O2 Fe3O4 H2O H2SO4Na2SO4

1)3Fe(bột) + 2O2 Fe3O4

Điều kiện: 150—600°C, cháy trong không khí

2) 4H2 + Fe3O4 3Fe + 4H2O

Điều kiện: trên 570°C

3) SO3 + H2O(lạnh) → H2SO4 (dung dịch pha loãng)

4Na2ZnO2 + 2H2SO4 →Na2SO4 + ZnSO4 + 2H2O

b) Fe2O3 + H2 → Fe + H2O

Fe + H2O → FeO + H2

2H2 + O2 →2H20

2H2O +2CL2 → 4HCL +O2

O2+2Ba→ 2BaO

BaO + H20→Ba(OH)2

17 tháng 3 2017

Ta có: a13-a1=a1(a12-1)=(a1-1)a1(a1+1), là tích của 3 số nguyên liên tiếp nên a13-a1 chia hết cho 2 và 3. Mà (2;3)=1

=> a13-a1 chia hết cho 6

Chứng minh tương tự:

a23-a2 chia hết cho 6

...

a20133 - a2013 chia hết cho 6.

=>(a13-a1) + (a23-a2)+...+(a20132 - a2013) chia hết cho 6

Hay S-P chia hết cho 6.

Do đó: Nếu một trong 2 biểu thức S, P chia hết cho 6 ta suy ra biểu thức còn lại cũng chia hết cho 6.

Vậy S chia hết cho 6 khi và chỉ khi P chia hết cho 6.

18 tháng 3 2017

thanks

3 tháng 12 2016

Đặt \(\hept{1\begin{cases}\frac{a_2}{a_1}=x\\\frac{b_2}{b_1}=y\\\frac{c_2}{c_1}=z\end{cases}}\)

Thì bài toán thành

x + y + z = 1(1); \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(2\right)\)

Chứng minh x2 + y2 + z= 1

Từ (2) ta có \(\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)

Từ (1) ta có

(x + y + z)2 = 1

<=> x2 + y2 + z2 + 2(xy + yz + zx) = 0

<=> x2 + y2 + z2 = 1

3 tháng 12 2016

bằng 1 đó chắc chắn lun