Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :ab/5 dư 1 => b=1 hoặc 6
Trường hợp 1 :a1-1a=3* => a=5 ;*=6 (thỏa mãn)
Trường hợp 2 :a6-6a=3* ta thấy không có số a nào thỏa mãn
Vậy ab=51 ;*=6
Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (dấu bằng xảy ra khi và chỉ khi x=y)
Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y
Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010
Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y
Nên: \(x=y=987\)
Max x+y=\(\sqrt{4\cdot987^2}=1974\)
Không viết đúng không
:v
Mình xem đáp án là 1328 với lại mình gõ nhầm;
abc, def là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .
ab - ba = 10a + b - (10b +a) = 9a - 9 b = 9(a - b)= 32 (a - b)
Để ab - ba là số chính phương thì a - b là số chính phương mà a; b là các chữ số
nên a - b chỉ có thể = 1; 4; 9
+) a - b = 1 ; ab nguyên tố => ab = 43
+) a - b = 4 => ab= 73 thỏa mãn
+) a- b = 9 => ab = 90 loại
Vậy ab = 43 hoặc 73