Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
420 chia hết cho a; 700 chia hết cho a
Mà a lớn nhất
=> a = ƯCLN(700; 420)
700 = 7. 22.52
420 = 7. 3. 22.5
=> ƯCLN(420; 700) = 7.22.5 = 140
Vậy a = 140
bài này dễ mà
Ừm.... mik bt lm những kỉu mik khum bt giải thíc thế nào ák....
Xin lỗi bn nhà🥺🥺
Theo bài ra ta có: a là ƯCLN (420;700). Ta có: 420= 2^2x3x5x7; 700= 2^2x5^2x7. ƯCLN(420;700)= 2^2x5=20
Ta có: 420 chia hết cho a
700 chia hết cho a
=>a=ƯC(420,700)
Vì a lớn nhất
=>a=ƯCLN(420,700)=140
Vậy a=140
Theo đề bài: a sẽ là ƯCLN của 420 và 700
ƯCLN ( 420; 700) = 140
Vậy a = 140
Vì 420 chia hết cho a và 700 chia hết cho a,mà a lớn nhất=> a = ƯCLN ( 420 , 700 )
=> 420 = 22 . 3 . 5. 7
700 = 22 . 52 . 7
=> ƯCLN (420,700) = 22 . 5 . 7 = 140
=> a = 140
Do 420 a và 720 a nên a là ƯC(420; 720)
Mà a là số lớn nhất nên a = ƯCLN(420; 720)
Ta có:
420 = 2².3.5.7
720 = 2⁴.3².5
⇒ a = ƯCLN(2².3.5) = 60
Vậy số cần tìm là 60
Vì 420 chia hết cho a
700 chia hết cho a
\(\Rightarrow a\inƯC\)
Mà a lớn nhất
Nên a \(\in\)ƯCLN (420,700)
Ta có: \(420\) = \(2^2.3.5.7\)
\(700=2^2.5^2.7\)
ƯCLN (420,700) = \(2^2.5.7\)\(=140\)
Vậy a = 140
Vì 420 chia hết cho a
700 chia hết cho a
\(\Rightarrow\)a\(\in U\left(420,700\right)\)
\(\Rightarrow\)UCLN(420,700) = 140
Mà a là số lớn nhất
Vay a = 140
Để 420 và 700 chia hết cho a (a lớn nhất)
=> \(a\inƯCLN\left(420,700\right)\)
\(420=2^2\cdot3\cdot5\cdot7\)
\(700=2^2\cdot5^2\cdot7\)
\(ƯCLN\left(420,700\right)=2^2\cdot5\cdot7=140\)
Vậy...