tim so ngyen n A = n+1 n - 2 B = 2n - 3 n + 1  

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

Ta có 4n+9 =4n+2+7=2.(n+1)+7

vì 2.(n+1) chia hết cho n+1 

nên n+1 thuộc Ư(7)={1;7}

do đó n+1=1=>n=0

n+1=7=>x=6

13 tháng 8 2017

Ta có : \(A=\frac{2n-7}{n-7}=\frac{2n-14+7}{n-7}=\frac{2\left(n-7\right)+7}{n-7}=\frac{2\left(n-7\right)}{n-7}+\frac{7}{n-7}=2+\frac{7}{n-7}\)

a) Để A là số nguyên  \(\Rightarrow2+\frac{7}{n-7}\in Z\) . Vì 2 thuộc Z  nên \(\frac{7}{n-7}\in Z\)

\(\Rightarrow7⋮\left(n-7\right)\Rightarrow n-7\inƯ\left(7\right)=\left\{-7;-11;7\right\}\)

\(\Rightarrow n\in\left\{-7+7;-1+7;1+7;7+7\right\}\)

\(\Rightarrow n\in\left\{0;6;8;14\right\}\)

b) nếu n là số lớn nhất nên n = 14

Thay n = 14 vào \(A=\frac{2n-7}{n-7}\Rightarrow A=\frac{2.14-7}{14-7}=\frac{21}{7}=3\)

Vì câu b mik không rõ đề lắm.

k mik nhé

13 tháng 8 2017

Câu b chịu khó suy luận tí nha. Cũng phân tích ra 2 + 7/(n+7). Rõ ràng để A là số nguyên lớn nhất thì 7/(n+7) phải là số nguyên lớn nhất. Mà phân thức này tử không đổi nên muốn đạt giá trị lớn nhất thì mẫu phải đạt số nguyên dương nhỏ nhất (là bằng 1).

Nên đáp số  n=8

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

10 tháng 9 2016

\(\frac{2n+1}{n+3}=\frac{n+n+1}{n+3}=\frac{n}{n+3}+\frac{n+1}{n+3}\)

Do: \(\frac{n}{n+3}< \frac{n}{n+1};\frac{n+1}{n+3}< \frac{n+1}{n+2}\Rightarrow\frac{n}{n+3}+\frac{n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\Rightarrow\frac{2n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\)

30 tháng 4 2017

\(2n-3⋮n+1\)

\(\Rightarrow2n+2-5⋮n+1\)

\(\Rightarrow2\left(n+1\right)-5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{1;-1;5;-5\right\}\)

\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)

Vậy \(n\in\left\{0;-2;4;-6\right\}\)

1 tháng 12 2017

\(A=\dfrac{n-2}{n+3}\)

\(A\) là số nguyên \(\Leftrightarrow n+3=1\)

\(\Leftrightarrow n=-2\)

\(B=\dfrac{2n-1}{n+1}\)

\(B\) là số nguyên \(\Leftrightarrow n+1=1\)

\(\Leftrightarrow n=0\)

\(C=\dfrac{2n+3}{n+2}\)

\(C\) là số nguyên \(\Leftrightarrow n+2=1\)

\(\Leftrightarrow n=-1\)

1 tháng 12 2017

Ta có:A=\(\dfrac{n-2}{n+3}=\dfrac{\left(n+3\right)-5}{n+3}=1-\dfrac{5}{n+3}\)

Để A∈Z=>\(\dfrac{5}{n+3}\)∈Z

=>5⋮ n+3

=>n+3∈Ư(5)=\(\left\{\pm1;\pm5\right\}\)

=>n∈\(\left\{-2;-4;2;-8\right\}\)

Ta có:B=\(\dfrac{2n-1}{n+1}=\dfrac{2\left(n+1\right)-3}{n+1}=2-\dfrac{3}{n+1}\)

Để B∈Z=>\(\dfrac{3}{n+1}\)∈Z=>3⋮n+1

=>n+1∈Ư(3)=\(\left\{\pm1;\pm3\right\}\)

=>n∈\(\left\{0;-2;2;-4\right\}\)

ta có :C=\(\dfrac{2n+3}{n+2}=\dfrac{2.\left(n+2\right)-1}{n+2}=2-\dfrac{1}{n+2}\)

Để C∈Z=>\(\dfrac{1}{n+2}\)∈Z=>1⋮n+2

=>n+2∈Ư(1)=\(\pm\)1

=>n=-1;-3

30 tháng 11 2017

a) ta có:

\(n^2+1⋮n+1\)

\(\Rightarrow\left(n^2-1\right)+2⋮n+1\)

\(\Rightarrow\left(n-1\right)\left(n+1\right)+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\in\left\{-1;1;-2;2\right\}\)

\(\Rightarrow x\in\left\{-2;0;-3;1\right\}\)