K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

bài này ta dùng kẹp nhé
Nếu \(\orbr{\begin{cases}x>1\\x< -1\end{cases}\Rightarrow\left(x-1\right)^3< x^3+2x^2+3x+2< \left(x+1\right)^3\Rightarrow y^3=x^3\Rightarrow2x^2+3x+2=0}\)
Vô lí vì VT>0
\(\Rightarrow x\in\left[-1;1\right]\)
Đến đây đơn giản rồi vì x y nguyên
 

27 tháng 12 2017

Nếu x=0 => y^3=2 => ko tồn tại y , x

Nếu x khác 0 mà x thuộc Z nên x^2 > = 1 => x^2-1 >=0

Dễ thấy: y^3 > x^3

Lại có : y^3 = (x+1)^3-(x^2-1) < = (x+1)^3

=> x^3 < y^3 < (x+1)^3

=> y^3 = (x+1)^3 => x^2-1 = 0 => x=-1; y=0 hoặc x=1;y=2

Vậy ........

k mk nha

26 tháng 10 2020

\(x^3-2x^2+3x=y^3+1\Leftrightarrow x^3-2x^2+3x-1=y^3\)

Ta có: \(y^3-\left(x+1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3+3x^2+3x+1\right)=-5x^2-2< 0\Rightarrow y^3< \left(x+1\right)^3\Rightarrow y< x+1\)(1)

\(y^3-\left(x-1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3-3x^2+3x-1\right)=x^2\ge0\Rightarrow y^3\ge\left(x-1\right)^3\Rightarrow y\ge x-1\)(2)

Từ (1) và (2) suy ra \(x-1\le y< x+1\Rightarrow\orbr{\begin{cases}y=x-1\\y=x\end{cases}}\)(do x, y nguyên)

  • Trường hợp y = x - 1 thì phương trình trở thành \(x^3-2x^2+3x-1=x^3-3x^2+3x-1\Leftrightarrow x^2=0\Leftrightarrow x=0\Rightarrow y=-1\)
  • Trường hợp y = x thì phương trình trở thành \(2x^2-3x+1=0\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1=y\\x=\frac{1}{2}\left(L\right)\end{cases}}\)

Vậy phương trình có 2 cặp nghiệm nguyên \(\left(x;y\right)\in\left\{\left(0;-1\right);\left(1;1\right)\right\}\)

19 tháng 3 2016

có 2 nghiệm ..

  nghiệm thứ 1: (1;2) nghiệm thứ 2 : ( -1 ; 0 )  .check mk nhá