Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy+x-y=4\)
\(x\left(y+1\right)-\left(y+1\right)=4-1\)
\(\left(x-1\right)\left(y+1\right)=3\)
\(\Rightarrow x-1;y+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng :
x-1 | -3 | -1 | 1 | 3 |
x | -2 | 0 | 2 | 4 |
y+1 | -1 | -3 | 3 | 1 |
y | -2 | -4 | 2 | 0 |
\(xy=\frac{x}{y}\)
=> xy.y = x
=> y2 = 1
=> \(y=\orbr{\begin{cases}1\\-1\end{cases}}\)
thay từng giá trị y = 1 ; y = -1 vào đẳng thức :
x + y = \(\frac{x}{y}\)
Với y = 1
=> x không có giá trị
Với y = -1
=> x = \(-\frac{1}{2}\)
Thứ nhất : là bài 3 bạn ghi đề bị thiếu .
Thứ hai : là mình đã tốn thời gian giải cho bạn rồi nên đừng tiếc thời gian để k cho mình nếu mình đúng
Thứ 3 : mong các thành phần chuyên sao chép lời giải người khác và đăng lên , thậm chí là giống như đúc đừng sao chép bài của mình nhé .
Giải :
1, Ta có : \(y\sqrt{x}-3y=\sqrt{x}+1\Rightarrow y\left(\sqrt{x}-3\right)=\sqrt{x}+1\)
\(\Rightarrow y\left(\sqrt{x}-3\right)-\left(\sqrt{x}+1\right)=0\Rightarrow y\left(\sqrt{x}-3\right)-\sqrt{x}-1=0\)
\(y\left(\sqrt{x-3}\right)-\sqrt{x}+3-4=0\Rightarrow y\left(\sqrt{x-3}\right)-\left(\sqrt{x-3}\right)-4=0\)
\(\left(\sqrt{x}-3\right)\left(y-1\right)-4=0\)
\(\left(\sqrt{x}-3\right)\left(y-1\right)=4\)
Vì y thuộc Z nên y-1 thuộc Z => \(\left(\sqrt{x}-3\right)\in Z\)
Ta có bảng :
\(\sqrt{x}-3\) | \(1\) | \(4\) | \(-1\) | \(-4\) | \(2\) | \(-2\) |
\(y-1\) | \(4\) | \(1\) | \(-4\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(2\) | \(\varnothing\) | \(\varnothing\) | \(\varnothing\) | \(\varnothing\) | \(1\) |
\(y\) | \(5\) | \(\varnothing\) | \(\varnothing\) | \(\varnothing\) | \(\varnothing\) | \(-1\) |
Vậy các cặp x,y thỏa mãn là (2;5) và (1;-1)
2,Ta có \(y\sqrt{x}-\sqrt{x}=1-y\Rightarrow\sqrt{x}\left(y-1\right)+y-1=0\Rightarrow\left(y-1\right)\left(\sqrt{x}+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y-1=0\\\sqrt{x}+1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x\in\varnothing\end{cases}}}\)
Vậy \(y=1,x\in\varnothing\)
Không hẳn là cách khác nhưng cứ xem cho vui=)
1/\(y\left(\sqrt{x}-3\right)=\sqrt{x}+1\Leftrightarrow y=1+\frac{4}{\sqrt{x}-3}\)
Để y nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Bài toán trở về dạng quen thuộc.
2/ \(\sqrt{x}\left(y-1\right)=1-y\)
Với y = 1 thì \(\sqrt{x}.0=0\) (luôn đúng)
Với y khác 1:
\(\sqrt{x}\left(y-1\right)=1-y\Rightarrow\sqrt{x}=\frac{1-y}{y-1}=\frac{-1\left(y-1\right)}{y-1}=-1\)(vô lí vì \(\sqrt{x}\ge0\))
Vậy x tùy ý; y = 1
3/ Thiếu đề.
x(1-y) -y =4
x =\(\frac{4+y}{1-y}\)
y =6 ; x = -2