Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bt=-5(x-3y)^2-2(x-3y)-4
thay x-3y=-7 ta có:
-5*(-7)^2-2*(-7)-4=-245+14-4=-235
a) Ta có: -5(x - 3y)2 - 2x + 6y - 4
= -5.(-7)2 - 2(x - 3y) - 4
= -5 . 49 - 2.(-7) - 4
= -245 + 14 - 4
= -235
b) *, -2.(x + 6) = 8 - 6.(x - 10)
=> -2x - 12 = 8 - 6x + 60
=> -2x + 6x = 68 + 12
=> 4x = 80
=> x = 80 : 4
=> x = 20
* ,2 tương tự
để (6a+1) chia hết cho(3a-1) thì 3a-1 thuộc Ư (3) = { 1,-1,3,-3}
vs 3a-1=1 => 3a=2 => a=2/3(loại)
vs 3a-1=-1 => 3a=0 => a=0
vs 3a-1 = -3a => a=4/3(loại)
vs 3a-1 = -3 => 3a = -2 => a= -2/3(loại)
vậy a=0
câu b làm tương tự
2x = 3y = 4z
=> \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
=> \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{21}{7}=3\)
=> \(\hept{\begin{cases}x=18\\y=12\\z=9\end{cases}}\)
Ta có: \(2x=3y=4z\) nên \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\), suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{21}{7}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.6=18\\y=3.4=12\\z=3.3=9\end{cases}}\)
Vậy \(x=18\), \(y=12\) và \(z=9\).
\(3x+3y-2xy=7\)
\(<=> y(3-2x) = 7-3x\)
Ta thấy \(x=1,5 \) không là nghiệm của phương trình
\(=>y=7-3x/3-2x\)
Do \( x,y \in Z\)\(=> 7-3x/3-2x \in Z\)
\(=> 21-6x/3-2x \in Z\)
\(=> 3 + 12/3-2x \in Z\)
\(<=> 3-2x \in Ư(12) = { 1;-1;2;-2;3;-3;4;-4;6;-6;12;-12 }\)
Rồi thay vô tìm ra y ~~
\(13x=13\Leftrightarrow x=1\)
\(\left(x-1\right)\left(y+3\right)=-5\)
\(TH1\hept{\begin{cases}x-1=-5\\y+3=1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-2\end{cases}}}\)
\(TH2\hept{\begin{cases}x-1=5\\y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=2\end{cases}}}\)
\(2n+1⋮n-3\)
\(2n-6+7⋮n-3\)
\(7⋮n-3\)
\(\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Tự lập bảng ....
Tương tự bài tiếp theo nhen
Mấy bài kia chắc c lm đc r nhỉ
2. a) \(2n+1⋮n-3\)
\(\Leftrightarrow2.\left(n-3\right)+7⋮n-3\)
\(\Leftrightarrow7⋮n-3\)
\(\Leftrightarrow n-3\in\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow n\in\left\{-4;2;4;10\right\}\) ( thỏa mãn n nguyên )
Vậy \(n\in\left\{-4;2;4;10\right\}\)
b) \(3n+8⋮n+1\)
\(\Leftrightarrow3.\left(n+1\right)+5⋮n+1\)
\(\Leftrightarrow5⋮n+1\)
\(\Leftrightarrow n+1\in\left\{-5;-1;1;5\right\}\)
\(\Leftrightarrow n\in\left\{-6;-2;0;4\right\}\) ( thỏa mãn n nguyên )
Vậy \(n\in\left\{-6;-2;0;4\right\}\)
~~~~~~~~~~ Học tốt nha ~~~~~~~~~~~~~~~~~
a) Ta có : 11 = 1 . 11 = 11 . 1
Lập bảng :
x | 1 | 1 |
y | 11 | 1 |
Vậy ...
b) Ta có : 12 = 1. 12 = 12.1 = 2.6 = 6.2 = 3.4 = 4.3
Do 2x + 1 là số lẽ => (2x + 1)(3y - 2) = 1 . 12 = 3.4
Lập bảng :
2x + 1 | 1 | 3 |
3y - 2 | 12 | 4 |
x | 0 | 2 |
y | ko thõa mãn đề bài | 2 |
Vậy...
c ) 1 + 2 + 3 + ........ + X = 55
<=> ( 1 + X ) x ( X : 2 ) = 55
<=> ( 1 + X ) x \(\frac{X}{2}\) = 55
<=> \(\frac{\left(1+X\right)\times X}{2}=55\)
\(\Leftrightarrow\frac{X+X^2}{2}=55\)
\(\Leftrightarrow X^2+X=110\)
\(\Leftrightarrow X^2+X-110=0\)
\(\left(a=1;b=1;c=-110\right)\)
\(\Delta=b^2-4ac\)
\(\Delta=1^2-4.1.\left(-110\right)\)
\(\Delta=441\)
\(\sqrt{\Delta}=\sqrt{441}=21\)
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-1+21}{2.1}=10\) ( nhận ) ( vì 10 là số tự nhiên thuộc N nên nhận )
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-1-21}{2.1}=-11\) ( loại ) ( vì -11 không phải là số tự nhiên , không thuộc N nên loại )
Vậy x = 10