![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 2x + 1 là số chính phương
Đặt 2x + 1 = a2
=> 2x = (a - 1)(a + 1)
=> \(\orbr{\begin{cases}a-1⋮2\\a+1⋮2\end{cases}}\)=> a = 2q \(\pm\)1(q \(\inℕ\))
=> Khi a = 2q + 1 => \(x=2q\left(q+1\right)\)
Khi a = 2a - 1 => x = \(2q\left(q-1\right)\)
Vậy khi x = 2q(q + 1) ; x = 2q(q - 1) thì 8x + 1 số chính phương
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ ta có:
\(x\sqrt{2y-1}+y\sqrt{2x-1}=\sqrt{x}.\sqrt{2xy-x}+\sqrt{y}.\sqrt{2xy-y}\)
\(\le\frac{x+2xy-x}{2}+\frac{y+2xy-y}{2}=2xy\)
Dấu = xảy ra khi ...
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
![](https://rs.olm.vn/images/avt/0.png?1311)
=>(x-1)(2y^2+y+1)= -2
lập hệ phương trình ng nguyên các ước của hai rồi giải