Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2-1=2y^2
<=>(x-1)(x+1)=2y^2=y.2y
+)x-1=2=>x=3
X+1=y^2=>y^2=4=>y=2
+)x-1=y=>x=y+1
X+1=2y=>y+1+1=2y=>y=2
=>x=2+1=3
Vậy (x,y)=(3;2)
x2-12y2=1 <=> (x-1)(x+1)=12y2=>x-1 thuộc các giá trị 1,2,3,4,6,12,y,y2
kết quả : ko có giá trị tm
1. Tổng các hệ số của đa thức là: 12004.22005=22005
2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.
Nhận thấy x = 1 không là nghiệm của phương trình .
Nhân cả hai vế của pt cho (x−1)≠0 được :
(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)
Vậy pt trên vô nghiệm.
1. Tổng các hệ số của đa thức là:
12014 . 22015 = 22015
2 . Cần chứng minh.
\(x4 + x3 + x2 + x + 1 = 0\)
Vô nghiệm.
Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình.
Nhân cả hai vế của phương trình cho:
\(( x - 1 ) \) \(\ne\) \(0\) được :
\(( x-1). (x4+x3+x2+x+1)=0\)
\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)
Vô lí.
Vậy phương trình trên vô nghiệm.
Bạn gõ thừa số "1" thì phải ?
Đặt \(\frac{x+\sqrt{2017}y}{y+\sqrt{2017}z}=m\) (với \(m\in Q\))
\(\Rightarrow x+\sqrt{2017}y=my+mz\sqrt{2017}\)\(\Leftrightarrow\left(x-my\right)-\sqrt{2017}\left(y-mz\right)=0\)(*)
+) Nếu \(y-mz\ne0\) thì: \(\sqrt{2017}=\frac{-\left(x-my\right)}{y-mz}\) (1)
Ta có: \(x;y;z\in N;m\in Q\Rightarrow\frac{-\left(x-my\right)}{y-mz}\in Q\) (2)
\(\sqrt{2017}\in I\) (Do 2017 không phải số chính phương) (3)
Từ (1); (2) và (3) => Mâu thuẫn => \(y-mz\ne0\)(loại)
+) Nếu \(y-mz=0\) thì: Từ (*) => \(\hept{\begin{cases}x-my=0\\y-mz=0\end{cases}\Rightarrow}\hept{\begin{cases}x=my\\y=mz\end{cases}}\Rightarrow\hept{\begin{cases}m=\frac{x}{y}=\frac{y}{z}\\x=m^2z\\y=mz\end{cases}}\Rightarrow\hept{\begin{cases}y^2=xz\\x=m^2z\\y=mz\end{cases}}\)
Đặt \(x^2+y^2+z^2=p\) (p nguyên tố) \(\Rightarrow\left(x+z\right)^2-2xz+y^2=p\)
\(\Rightarrow\left(x+z\right)^2-y^2=p\)(Do y2 = xz) \(\Leftrightarrow\left(x+z-y\right)\left(x+y+z\right)=p\)
Ta thấy x;y;z thuộc N* => \(x+z-y\le x+y+z\)
Nên \(\hept{\begin{cases}x+z-y=1\left(4\right)\\x+y+z=p\end{cases}}\)(Vì p là số nguyên tố)
Lại có: \(x^2+y^2+z^2=p\Rightarrow m^4z^2+m^2z^2+z^2=p\) (Do x = m2z; y = mz)
\(\Leftrightarrow z^2\left(m^4+m^2+1\right)=p\Rightarrow\hept{\begin{cases}z=1\\m^4+m^2+1=p\end{cases}}\)(p nguyên tố)
Thay z=1 vào (4) ta có: \(x-y+1=1\Leftrightarrow x=y\)
\(m^4+m^2+1=p\Leftrightarrow\left(m^2+m+1\right)\left(m^2-m+1\right)=p\)
\(\Rightarrow m^2-m+1=1\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=1\end{cases}}\)
+) Nếu m=0 thì: \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}=0\Rightarrow x+y\sqrt{2017}=0\)(Do \(y+z\sqrt{2017}\ne0\))
Mà x;y thuộc N* nên \(x+y\sqrt{2017}>0\)=> Loại.
+) Nếu m=1 thì \(x+y\sqrt{2017}=y+z\sqrt{2017}\Rightarrow y\sqrt{2017}=z\sqrt{2017}\)(x=y)
\(\Rightarrow y=z\Rightarrow x=y=z=1\) (Vì z=1)
Khi đó: \(\hept{\begin{cases}\frac{x+\sqrt{2017}y}{y+\sqrt{2017}z}=1\\x^2+y^2+z^2=3\end{cases}}\) (thỏa mãn). Vậy x=y=z=1.
Ta có :
x2 + x - p = 0
=> x.(x + 1) = p
x và x + 1 là 2 số nguyên liên tiếp nên x chẵn hoặc x + 1 chẵn
Do đó x.(x + 1) = p chẵn
Mà số nguyên tố chẵn duy nhất là 2 nên p = 2
Khi đó ta có x.(x + 1) = 2 = 1 . 2 = 1 . (1 + 1)
Vậy x = 1
Cách làm của Đinh Tuấn Việt chính xác! Tuy nhiên, kết quả còn thiếu x = - 2