\(x^2-2x-4\)là số chính phương ; b)C=\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

Đặt x2 + 2x + 8 = y2 

<=> (x2 + 2x + 1) + 7 = y2

<=> (x + 1)2 - y2 = - 7

<=> (x + 1 - y)(x + 1 + y) = - 7 = - 1.7 = - 7.1

Với x + 1 - y = - 1 thì x + 1 + y = 7

<=> x - y = - 2 và x + y = 6

=> x = ( 6 - 2 ) : 2 = 2

Với x + 1 - y = - 7 thì x + 1 + y = 1

<=> x - y = - 8 và x + y = 0

=> x = ( 0 - 8 ) : 2 = - 4 ( loại )

Vậy x = 2 thì x2 + 2x + 8 là số CP

18 tháng 4 2017

Giải:

Dùng biến đổi tương đương chứng minh được:

\(\left(x^2+x+2\right)^2=x^4+5x^3+4x+4>x^4+2x^3+2x^2+x+3>\) \(x^4+2x^3+x^2=\left(x^2+x\right)^2\)

\(\Rightarrow x^4+2x^3+2x^2+x+3=\left(x^2+x+1\right)^2\)

\(\Leftrightarrow x^4+2x^3+2x^2+x+3=x^4+2x^3+3x^2+2x+1\)

\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy \(x=1\) hoặc \(x=-2\) thì phương trình trên là số chính phương

18 tháng 4 2017

dùng phương pháp hệ số bất định ý bạn gọi đa thức đó là bình phương của đa thức (x^2+ax+b)^2 rồi khai triển là ok

28 tháng 3 2018

câu 2 nề

A=\(\frac{2x+1}{x^2+2}\)=\(\frac{x^2+2-2x-x^2-1}{x^2+2}\)= \(\frac{x^2+2}{x^2+2}\)-\(\frac{x^2+2x+1}{x^2+2}\) 1- \(\frac{x^2+2x+1}{x^2+2}\)= 1- \(\frac{\left(x+1\right)^2}{x^2+2}\)

vậy max A = 1 khi x= -1

28 tháng 3 2018

mình bik câu 1,3 r. Cần câu 2 thôi. Giúp mình với